FEmacs Cheatsheat

Joshua Branson

June 3, 2016

1 Why use Emacs?

For starters, Emacs is freedom respecting software. This is often shortened
to "free software”, or "libre software”. This means that one has the right to:

0 run the program for any reason.

1 the right to help yourself. This is the right to study the source code
and change it.

2 The right to help your neighbor. This is the right to distribute
unmodified copies of Emacs to your neighbor. You could also even sell
this program to your neighbor!

3 The right to help your community. This is the right to distribute
your modified version of Emacs. You could also sell your modified
version!

So Emacs grants you, the user, many freedoms that other programs
lack. Please notice that this is computing freedom. Free software is
liberty software, not necessarily gratis software. However, Emacs is
Free software, and it can usually be obtained as gratis software.

There are also some practical reasons to use Emacs. Plenty of program-
mers these days use drastically simple programming editors like notepad,
notepad+-+, nano. These editors are "What you see is what you get” type
editors, and they are frustratingly lacking in good features, and one cannot
easily configure these editors. Emacs gives you the ability to install hun-
dreds, if not thousands of add-ons, and configure everything that your text
editor does.

So what can Emacs do? You can use emacs to use commands to ma-
nipulate and transpose regions of text, write in nearly every programming

language imaginable, read your email, browse the internet, play games,
browse local files, look at a photo gallery, stream internet music, watch on-
line movies (coming soon), create text expandable abbreviations, clock your
working hours, invoice clients, schedule your weekly agenda, syntax check-
ing, browse documentation, commit your development changes to version
control, emulate vim, all of which can be configured and tweaked emacs in
numerous ways. If that doesn’t satisfy you, then you can programmatically
change emacs’ behavior to better suit your development workflow.

2 Emacs Introduction

Emacs is a incredibly old software. It’s been around since the late 80s and
early 90s, and its amazing flexibility is probably what has kept it alive this
long. Learning Emacs can be a huge challenge of its own, but if you take
the time to learn Emacs, the rewards are astonishing.

Notepad Pico
Classical learning
curves for some
common editors
)
1704
Visual Studio vi cmacs

(Original source appears to be Steve Rowe’s blog. “A friend of mine put
this together” Source).

Since Emacs is so old, it created some terminology that modern text ed-
itors do not use. For example Emacs has "Frames” and "Windows”, "yank-
ing” and ”killing” and no other text editor uses those terms, but the best
way to learn Emacs, is to dive into the terminology. So put on your big
programming pants, and follow me down the Emacs golden brick road of

confusion!

https://blogs.msdn.microsoft.com/steverowe/2004/11/17/code-editor-learning-curves/

So go ahead and launch Emacs. When you do, you should see a blinking
rectangle. When you start to type this rectangle moves and letters appear.
That blinking rectangle is called point. When point moves around the text,
we say that point moves in the buffer. The buffer then is a region in Emacs
that contains text. Since you’ve just started Emacs, the whole Emacs graph-
ical display is one frame. You can also launch Emacs from the terminal and
that is still just one frame of Emacs. If you open a second instance of Emacs,
you now have two frames. Emacs also has windows. An Emacs window is
the portion of Emacs that contains the buffer, or the text. It’s also possible
to for a frame to have multiple windows. You can read more about creating
and deleting windows and frames in [Frame and Window Commands|

3 Built in Emacs Features

3.1 Movement

One can always use the arrow keys to move point, but Emacs provides some
nifty ways of moving point as well. Pressing and holding the control key
whilst hitting ”f” will move point forward one character. In Emacs lingo
we call that a keychord, and it is denoted like this ”C-f”. Similarly, holding
and pressing the control key, then hitting ”b” will move point backward one
character. That keychord is denoted as "C-b”. ”C-p” will move point back
to the up previous line, and ”C-n” will move point down to the next line.
So the basic movement keys look like this:

"C_pll
/\
I
I
Il
I

"C-b" <--mmmmm—m———- | [—=——mmm > "C-f"
I
I
I
I
I
I
\/

nC-n"

3.2 Yanking and Killing

” ”

Most text editors use the words ”cutting”, ”pasting”, and "coping” for the
commands C-x, C-v, and C-c. Emacs used different words and different
commands. What is normally called cutting is killing in Emacs. In this
way, one Kkills to the kill region, a section where Emacs stores killed text.
Pasting is called yanking. One yanks from the kill region to past into the
buffer. Copying in Emacs is also called copying.

To kill or copy a region of text, you must first mark that region or
highlight it. To begin marking a region of text one presses C-<space> or
C-SPC. <space> and SPC means hitting the spacebar key. Then you can
move around point until you have marked the entire region. To kill the
region type C-w. To copy the region type M-w. M stands for the meta key,
which on today’s keyboard usually means the alt key. So M-w means to press
and hold the alt key, then hit the w key. Alternatively hitting the ESC key
is the same as pressing and holding the alt key. So M-w is the same thing as
ESC-w.

To yank the killed or copied text back into the buffer press the C-y
keychord.

3.3 Opening, Closing, and Saving Files

When one opens and edits a file in Emacs, Emacs opens the file and puts
the contents in an editable buffer. As you edit the buffer, you only change
the a region in memory. When you type C-x s to save the current buffer,
the buffer’s content are saved in the file.

Since I am constantly changing multiple files, I've modified my save
function to save every open file. If you would like to do the same, you can
put the following in your init file:

(add-hook ’after-save-hook #’(lambda ()
(interactive)
(save-some-buffers 1)))

Emacs’ default method of opening a files is ido mode, which is pro-
nounced like "I do mode”. C-x C-f or (find-file) opens a file in Emacs. One
can press the tab key to complete a partially completed file name. Typing
"~/ means to make ido search in the user’s home directory. I personally do

not enjoy using ido-mode. Instead I prefer

3.4 Frame and Window Commands

Emacs has windows and frames, and they are probably not what you think
they are. A Frame is probably what you would think a window is. So when
you follow a link in your browser in a new window, that is a window in
browser terminology. In Emacs you can do the same thing, but it is called
opening a new frame. Go ahead and open a new frame now by typing C-x
5 2. To get back to one Emacs frame, you can either close the additional
frame normally, or you can press C-x 5 O.

An Emacs window then is the buffer portion of the frame that displays
text. One frame can have multiple windows. If you type C-x 1, then Emacs
is only displaying one window. Then, if you type C-x 2 or C-x 3, then
Emacs is displaying 2 windows. So a window then is a section of the Emacs
Frame that contains text from a buffer. To make the current frame only
display one buffer, you can press C-x 1.

In emacs the entire emacs program takes up a frame. But emacs allows
you to view two different files in the same frame, by splitting the frame in
half, or in two windows.

e C-x o Delete the selected window

e C-x 1 Delete all the windows except the one that currently has point
e C-x ~ make the selected window taller

e C-x make the selected window narrower

e C-x make the selected window wider

3.5 Bookmarks

Emacs bookmarks are nifty ways of saving your place in a file. If you wish
to return to some obscure local or remote file, you can easily save point’s
current position, and return to it later.

e C-x r msets a bookmark for you at point and it prompts you to name
it

e C-x r b jumps you to a bookmark

3.6 Learning About Emacs

Emacs comes with some amazing documentation. M-x info will show you a
list of the available documentation that comes with Emacs. This documen-
tation is contained in info files, which can be easily navigated via Emacs.

Emacs also has a pretty powerful help command: C-h. C-h v will let you
learn some documentation about a particular Emacs variable, while C-h f
will show you documentation for an Emacs elisp function. Every time that
you hit a keychord, an equivalent Emacs function is called. In fact C-h
k KEYCHORD, will tell you the documentation for the a function based on
its keychord. For example, C-h k C-n will display documentation for the
function "next-line”.

3.7 Configuring Emacs with Lisp

Emacs’ flexibility stems from the ability to program-matically change it via
Emacs lisp. If you dislike a particular aspect of Emacs, then you can easily
change it by putting in some Emacs lisp code into your init file. This is the
file that Emacs loads every time on startup. Any Emacs lisp functionality
that you code in your init file, will be available every time you start emacs.
You can find your init file by checking out the variable user-init-file. To
do this press the keychord C-h v RET user-init-file RET.

3.8 Dired

Dired is the emacs file manager. It opens a buffer displaying all your files
in the specified directory. With it you can perform numerous commands
on marked files, like deleting, copying, moving, or even creating your own
command.

3.8.1 Commands

e n next line
e p previous line
e m mark the current file under point

e 7% m REGEXP <RET> mark files based on a regular expression

3.8.2 Image Dired

You can also view images inside dired! Mark the images you wish to view,
then press C-t d (image-dired-display-thumbs). Alternatively, you could also
just run the command M-x image-dired.

3.9 Macros

A Macro is a remembered sequence of Emacs keychords that can be repeated.
This is useful to easily repeat complicated commands. For example, I can
write out the numbers 1 through a 100, if T hit 30 keys, and I could write
the numbers 1 through 1,000 by typing 31 keys.

e C-x (begin recording a keyboard macro
e C-x) end recording a keyboard macro

e C-x e performs the last created keyboard macro

3.10 Narrowing

Narrowing commands make Emacs only display portions of the buffer, whilst
hidding all other regions. While Emacs is narrowed, all entered commands
only affected the displayed regions. This means any hidden area cannot
be modified while Emacs is narrowed. This is useful if you only want a
macro to execute within a specific function. Here are the relevant narrowing
commands:

C-x n <letter>

e d narrow to defun
e r widen to region
e s narrow to a org subtree

o w widden to the whole buffer

A much better way to use the narrowing commands is just to make
emacs guess what you want whenever you press "C-x n”, and that’s what
the following snippet does. I recommend that you put it in your .emacs file.
The code works by figuring out which narrowing command you want to use.
If point is currently in a definition, then the buffer will be narrowed to that
definition. If point is in an org-subtree, then the buffer will be narrowed to
that subtree.

You can see the blog post where I found this code snippet here.

http://endlessparentheses.com/emacs-narrow-or-widen-dwim.html

;; Also set up narrow dwin
(defun narrow-or-widen-dwim (p)

"Widen if buffer is narrowed, narrow-dwim otherwise.
Dwim means: region, org-src-block, org-subtree, or defun,
whichever applies first. Narrowing to org-src-block actually
calls ‘org-edit-src-code’.

With prefix P, don’t widen, just narrow even if buffer is
already narrowed."
(interactive "P")
(declare (interactive-only))
(cond ((and (buffer-narrowed-p) (mot p)) (widen))
((region-active-p)
(narrow-to-region (region-beginning) (region-end)))
((derived-mode-p ’org-mode)
;3 ‘org-edit-src-code’ is not a real narrowing
;; command. Remove this first conditional if you
;; don’t want it.
(cond ((ignore-errors (org-edit-src-code))
(delete-other-windows))
((ignore-errors (org-narrow-to-block) t))
(t (org-narrow-to-subtree))))
((derived-mode-p ’latex-mode)
(LaTeX-narrow-to-environment))
(t (narrow-to-defun))))

;; This line actually replaces Emacs’ entire narrowing

;3 keymap, that’s how much I like this command. Only copy it
;3 if that’s what you want.

(define-key ctl-x-map "n" #’narrow-or-widen-dwim)

3.11 org-mode

Emacs org-mode really deserves its own cheatsheat, so I won’t go into much
detail here, but I'll start you off with the basics. Org-mode is Emacs’ or-
ganizational mode, and it’s pure gold! With Org-mode I organize my daily
agenda, todo lists. Parts of my emacs init files are written in it. I use it to
keep track of my working hours, with which I then invoice clients. I use its
markup to write MIME emails. I wrote all of my documentation in it, and
I keep track of my finances with it! It truly is a remarkable emacs mode!

3.11.1 Org-mode’s hierarchical structure

Org-mode lets you easily insert headings and sub headings with "C-RET”.
If you press it many times, you’ll have something like this:

* ¥ ¥ %

A line with just one ”*” is a top level heading. If it has a two ”**” below

it, then it now has a sub-heading. Just like the following;:

* T am a top level heading
** T am a sub-heading.

You can use the tab key to show/hide any sub level headings.
Org-mode is also great for todo lists. Hitting C-c C-t lets you mark an
item as TODO or DONE.

Todo lists One can easily create simple todo lists with org-mode. In any
org file C-RET inserts a "*” into the buffer. Pressing "C-c¢ C-t” will add the
words "TODQO”. It’ll look like:

* TODO

Pressing C-c C-t again, will change the status to DONE. You will end
up with something looking like:

* DONE

3.11.2 org-babel

Org babel is a the best approach towards literate programming ever at-
tempted, and it works! Almost all programming languages treat code as
the first order citizen and hides comments behind a simple syntax. I will
eventually move org babel into its own cheatsheet, but I will describe the
basics for you here. For example here is some javascript:

console.log("hello world")

Let’s write a trivial js function the literate way

#+BEGIN_SRC js :exports code
var i = 5;
if (1 < 6) {
i++;
b
console.log (i);
#+END_SRC

Literate programming might not be the best method of coding large
projects, but it incredibly useful for writing your Emacs config files. You
can see an example of my org more custom-izations here.

Specific header arguments http://orgmode.org/manual/Specific-header-arguments.
html
org#Specific| header arguments|

e :results
syntax:
:results [raw — silent — value — output |
value is function mode. It means that org-mode will use the last
executed command as the value of the output. ie

import time

print("Hello, today’s date is %s" % time.ctime())
print (°’Two plus two is’)

return 2 + 2

echo "hello world"
echo "big cat"

1s -1h | grep emacs.org

o :exports [code — results — node — both]

e :dir Specify a default directory that the code is to be run in :dir dir
1s

:dir can also specify remote directories to run code!

1s

10

https://github.com/jbranso/.emacs.d/blob/master/lisp/init-org.org
http://orgmode.org/manual/Specific-header-arguments.html
http://orgmode.org/manual/Specific-header-arguments.html
org##Specific

4 Helpful Emacs modes

4.1 Bug Hunter

If you fairly regularly change your init file, then you will at some point open
your init file with a broken emacs. Bug hunter helps you quickly narrow
down the cause of the error. You want to make sure that bug-hunter is
loaded early in your init, but then anytime that you find another issue, just
run. M-x bug-hunter-init-file e RET
https://github.com/Malabarba/elisp-bug-hunter

4.2 Helm Mode

Helm mode is an interactive completetion framework that is much better
than ido mode. C-c¢ C-f helm-find-files

In this mode typing "~/ manage js$” will display a list of files in my
home directory that contain the word "manage” and end with ”js”

Typing C-1 will display the files is the parent directory.

Typing C-z when point is on a directory, will show the files in that
directory.

Helm has nth commands. Instead of typing tab to get to the action
menu just press C-e for the 2nd action and C-j for the 3rd action. You can
also bind a key to an action menu (define-key helm-map (kbd ”jC-tab;”)
"helm-select-4th-action)

4.2.1 commands

You can learn how to write your own helm commands here: write your own
helm extentions C-c h m open helm-man-woman C-c h h g open helm info
gnus C-c h h r open the helm-emacs-info C-c h b is helm-resume which
opens up the last helm instance. M-<space> mark candidate C-h m inside a
helm window will show you all of helm’s keybindings

4.3 El-doc

El-doc shows you a function’s documentation in the mini-bar as you write
it. By default it works for emacs lisp extremely well. functions. You can
add this to your init file if you’d like to try it for emacs lisp.

(add-hook ’emacs-lisp-mode-hook ’eldoc-mode)

11

https://github.com/Malabarba/elisp-bug-hunter
http://wikemacs.org/wiki/How_to_write_helm_extensions
http://wikemacs.org/wiki/How_to_write_helm_extensions

4.4 Yasnippet

Yasnippet is Emacs non-official but pretty much most commonly used snip-
pet system. You can define an abbreviation, then when expanded does what
the snippet file says to do. http://ergoemacs.org/emacs/yasnippet_
templates_howto.html

4.4.1 Important Characters

e $& indents the line according to the major mode
e ‘(some-lisp-code)‘ embods lisp code
e $0 where point will be when the snippet ends

e $n where n is a number ie: $1, $2, etc. If you have multiple $3, then
typing some text in one $3 will also be put in the other $3.

o =$%{n:jplaceholder text;}

4.5 Undo Tree

Undo tree is a mode that lets you visually step through the changes that you
have done to the buffer. You can step backwards and forwards through time.
In normal creation of a documentent, a user typically creates several changes
that the emacs undo command is not sufficient to solve. A document’s
historical content is not always linear. Instead, during normal editing, a
user can write content that the normal emacs undo command forgets about.
This is where undo tree is helpful. Invoking M-x undo-tree shows the user
a visual representation of the buffer in time. Using the arrow keys (or
conventional emacs replacements), one can step through a documentent’s
progression.

4.6 Ediff

Ediff is emacs’s cool way of comparing two files and merging them into one.
M-x ediff starts the process. Emacs will prompt you to ediff two files, and
then you can begin merging the files together.

4.6.1 Commands

e a copies buffer a diff to buffer b

12

http://ergoemacs.org/emacs/yasnippet_templates_howto.html
http://ergoemacs.org/emacs/yasnippet_templates_howto.html

e b copies buffer b diff to buffer a

e A toggles readonly mode of buffer a
e B toggles readonly mode of buffer b
e wa save buffer a

e wb save buffer b

e ! update the differance regions. If you press a and b multiple times,
you should probably do a !

e * highlights the words in the diff region that differ
e ra restore the diff region in buffer a

e rb restore the diff region in buffer b

e z suspend the ediff session

e s make the merge buffer as small as possible

When you specify files, you can edit the files as root using tramp’s syntax
like this.
/su::/path/to/file

4.7 Tramp

Tramp is an emacs extension that lets you edit remote files. To use tramp,
just begin by opening a file via C-x C-f (find-file) then typing one of the
following special syntaxes:
/HOST:FILENAME /USERQHOST:FILENAME /USERQHOST#PORT:FILENAME
/METHOD:USERQHOST:FILENAME /METHOD:USERQHOST#PORT:FILENAME

5 Regexp

Regular expressions are nifty ways of searching/replacing regions of text.
Consider this example

if (isadmin() || ismanager ()) {

//some code here

3

13

Suppose that you want to add a space between both ”is” in the functions.
The following would do this:

M-x dired-do-query-replace-regexp is(admin|manager) RET is 1
RET

But let’s get a basic understanding of regexps.

6 Useful Elisp Libraries

e ctable https://github.com/kiwanami/emacs-ctable

e shttps://github.com/magnars/s.el

fhttps://github.com/rejeep/f.el

dash https://github.com/magnars/dash.el

14

https://github.com/kiwanami/emacs-ctable
https://github.com/magnars/s.el
https://github.com/rejeep/f.el
https://github.com/magnars/dash.el

	Why use Emacs?
	Emacs Introduction
	Built in Emacs Features
	Movement
	Yanking and Killing
	Opening, Closing, and Saving Files
	Frame and Window Commands
	Bookmarks
	Learning About Emacs
	Configuring Emacs with Lisp
	Dired
	Commands
	Image Dired

	Macros
	Narrowing
	org-mode
	Org-mode's hierarchical structure
	org-babel

	Helpful Emacs modes
	Bug Hunter
	Helm Mode
	commands

	El-doc
	Yasnippet
	Important Characters

	Undo Tree
	Ediff
	Commands

	Tramp

	Regexp
	Useful Elisp Libraries

