12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574 |
- #ifndef GIM_LINEAR_H_INCLUDED
- #define GIM_LINEAR_H_INCLUDED
- /*! \file gim_linear_math.h
- *\author Francisco Leon Najera
- Type Independant Vector and matrix operations.
- */
- /*
- -----------------------------------------------------------------------------
- This source file is part of GIMPACT Library.
- For the latest info, see http://gimpact.sourceforge.net/
- Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
- email: projectileman@yahoo.com
- This library is free software; you can redistribute it and/or
- modify it under the terms of EITHER:
- (1) The GNU Lesser General Public License as published by the Free
- Software Foundation; either version 2.1 of the License, or (at
- your option) any later version. The text of the GNU Lesser
- General Public License is included with this library in the
- file GIMPACT-LICENSE-LGPL.TXT.
- (2) The BSD-style license that is included with this library in
- the file GIMPACT-LICENSE-BSD.TXT.
- (3) The zlib/libpng license that is included with this library in
- the file GIMPACT-LICENSE-ZLIB.TXT.
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
- GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
- -----------------------------------------------------------------------------
- */
- #include "gim_math.h"
- #include "gim_geom_types.h"
- //! Zero out a 2D vector
- #define VEC_ZERO_2(a) \
- { \
- (a)[0] = (a)[1] = 0.0f; \
- }\
- //! Zero out a 3D vector
- #define VEC_ZERO(a) \
- { \
- (a)[0] = (a)[1] = (a)[2] = 0.0f; \
- }\
- /// Zero out a 4D vector
- #define VEC_ZERO_4(a) \
- { \
- (a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f; \
- }\
- /// Vector copy
- #define VEC_COPY_2(b,a) \
- { \
- (b)[0] = (a)[0]; \
- (b)[1] = (a)[1]; \
- }\
- /// Copy 3D vector
- #define VEC_COPY(b,a) \
- { \
- (b)[0] = (a)[0]; \
- (b)[1] = (a)[1]; \
- (b)[2] = (a)[2]; \
- }\
- /// Copy 4D vector
- #define VEC_COPY_4(b,a) \
- { \
- (b)[0] = (a)[0]; \
- (b)[1] = (a)[1]; \
- (b)[2] = (a)[2]; \
- (b)[3] = (a)[3]; \
- }\
- /// VECTOR SWAP
- #define VEC_SWAP(b,a) \
- { \
- GIM_SWAP_NUMBERS((b)[0],(a)[0]);\
- GIM_SWAP_NUMBERS((b)[1],(a)[1]);\
- GIM_SWAP_NUMBERS((b)[2],(a)[2]);\
- }\
- /// Vector difference
- #define VEC_DIFF_2(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] - (v1)[0]; \
- (v21)[1] = (v2)[1] - (v1)[1]; \
- }\
- /// Vector difference
- #define VEC_DIFF(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] - (v1)[0]; \
- (v21)[1] = (v2)[1] - (v1)[1]; \
- (v21)[2] = (v2)[2] - (v1)[2]; \
- }\
- /// Vector difference
- #define VEC_DIFF_4(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] - (v1)[0]; \
- (v21)[1] = (v2)[1] - (v1)[1]; \
- (v21)[2] = (v2)[2] - (v1)[2]; \
- (v21)[3] = (v2)[3] - (v1)[3]; \
- }\
- /// Vector sum
- #define VEC_SUM_2(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] + (v1)[0]; \
- (v21)[1] = (v2)[1] + (v1)[1]; \
- }\
- /// Vector sum
- #define VEC_SUM(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] + (v1)[0]; \
- (v21)[1] = (v2)[1] + (v1)[1]; \
- (v21)[2] = (v2)[2] + (v1)[2]; \
- }\
- /// Vector sum
- #define VEC_SUM_4(v21,v2,v1) \
- { \
- (v21)[0] = (v2)[0] + (v1)[0]; \
- (v21)[1] = (v2)[1] + (v1)[1]; \
- (v21)[2] = (v2)[2] + (v1)[2]; \
- (v21)[3] = (v2)[3] + (v1)[3]; \
- }\
- /// scalar times vector
- #define VEC_SCALE_2(c,a,b) \
- { \
- (c)[0] = (a)*(b)[0]; \
- (c)[1] = (a)*(b)[1]; \
- }\
- /// scalar times vector
- #define VEC_SCALE(c,a,b) \
- { \
- (c)[0] = (a)*(b)[0]; \
- (c)[1] = (a)*(b)[1]; \
- (c)[2] = (a)*(b)[2]; \
- }\
- /// scalar times vector
- #define VEC_SCALE_4(c,a,b) \
- { \
- (c)[0] = (a)*(b)[0]; \
- (c)[1] = (a)*(b)[1]; \
- (c)[2] = (a)*(b)[2]; \
- (c)[3] = (a)*(b)[3]; \
- }\
- /// accumulate scaled vector
- #define VEC_ACCUM_2(c,a,b) \
- { \
- (c)[0] += (a)*(b)[0]; \
- (c)[1] += (a)*(b)[1]; \
- }\
- /// accumulate scaled vector
- #define VEC_ACCUM(c,a,b) \
- { \
- (c)[0] += (a)*(b)[0]; \
- (c)[1] += (a)*(b)[1]; \
- (c)[2] += (a)*(b)[2]; \
- }\
- /// accumulate scaled vector
- #define VEC_ACCUM_4(c,a,b) \
- { \
- (c)[0] += (a)*(b)[0]; \
- (c)[1] += (a)*(b)[1]; \
- (c)[2] += (a)*(b)[2]; \
- (c)[3] += (a)*(b)[3]; \
- }\
- /// Vector dot product
- #define VEC_DOT_2(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1])
- /// Vector dot product
- #define VEC_DOT(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2])
- /// Vector dot product
- #define VEC_DOT_4(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] + (a)[3]*(b)[3])
- /// vector impact parameter (squared)
- #define VEC_IMPACT_SQ(bsq,direction,position) {\
- GREAL _llel_ = VEC_DOT(direction, position);\
- bsq = VEC_DOT(position, position) - _llel_*_llel_;\
- }\
- /// vector impact parameter
- #define VEC_IMPACT(bsq,direction,position) {\
- VEC_IMPACT_SQ(bsq,direction,position); \
- GIM_SQRT(bsq,bsq); \
- }\
- /// Vector length
- #define VEC_LENGTH_2(a,l)\
- {\
- GREAL _pp = VEC_DOT_2(a,a);\
- GIM_SQRT(_pp,l);\
- }\
- /// Vector length
- #define VEC_LENGTH(a,l)\
- {\
- GREAL _pp = VEC_DOT(a,a);\
- GIM_SQRT(_pp,l);\
- }\
- /// Vector length
- #define VEC_LENGTH_4(a,l)\
- {\
- GREAL _pp = VEC_DOT_4(a,a);\
- GIM_SQRT(_pp,l);\
- }\
- /// Vector inv length
- #define VEC_INV_LENGTH_2(a,l)\
- {\
- GREAL _pp = VEC_DOT_2(a,a);\
- GIM_INV_SQRT(_pp,l);\
- }\
- /// Vector inv length
- #define VEC_INV_LENGTH(a,l)\
- {\
- GREAL _pp = VEC_DOT(a,a);\
- GIM_INV_SQRT(_pp,l);\
- }\
- /// Vector inv length
- #define VEC_INV_LENGTH_4(a,l)\
- {\
- GREAL _pp = VEC_DOT_4(a,a);\
- GIM_INV_SQRT(_pp,l);\
- }\
- /// distance between two points
- #define VEC_DISTANCE(_len,_va,_vb) {\
- vec3f _tmp_; \
- VEC_DIFF(_tmp_, _vb, _va); \
- VEC_LENGTH(_tmp_,_len); \
- }\
- /// Vector length
- #define VEC_CONJUGATE_LENGTH(a,l)\
- {\
- GREAL _pp = 1.0 - a[0]*a[0] - a[1]*a[1] - a[2]*a[2];\
- GIM_SQRT(_pp,l);\
- }\
- /// Vector length
- #define VEC_NORMALIZE(a) { \
- GREAL len;\
- VEC_INV_LENGTH(a,len); \
- if(len<G_REAL_INFINITY)\
- {\
- a[0] *= len; \
- a[1] *= len; \
- a[2] *= len; \
- } \
- }\
- /// Set Vector size
- #define VEC_RENORMALIZE(a,newlen) { \
- GREAL len;\
- VEC_INV_LENGTH(a,len); \
- if(len<G_REAL_INFINITY)\
- {\
- len *= newlen;\
- a[0] *= len; \
- a[1] *= len; \
- a[2] *= len; \
- } \
- }\
- /// Vector cross
- #define VEC_CROSS(c,a,b) \
- { \
- c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
- c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
- c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
- }\
- /*! Vector perp -- assumes that n is of unit length
- * accepts vector v, subtracts out any component parallel to n */
- #define VEC_PERPENDICULAR(vp,v,n) \
- { \
- GREAL dot = VEC_DOT(v, n); \
- vp[0] = (v)[0] - dot*(n)[0]; \
- vp[1] = (v)[1] - dot*(n)[1]; \
- vp[2] = (v)[2] - dot*(n)[2]; \
- }\
- /*! Vector parallel -- assumes that n is of unit length */
- #define VEC_PARALLEL(vp,v,n) \
- { \
- GREAL dot = VEC_DOT(v, n); \
- vp[0] = (dot) * (n)[0]; \
- vp[1] = (dot) * (n)[1]; \
- vp[2] = (dot) * (n)[2]; \
- }\
- /*! Same as Vector parallel -- n can have any length
- * accepts vector v, subtracts out any component perpendicular to n */
- #define VEC_PROJECT(vp,v,n) \
- { \
- GREAL scalar = VEC_DOT(v, n); \
- scalar/= VEC_DOT(n, n); \
- vp[0] = (scalar) * (n)[0]; \
- vp[1] = (scalar) * (n)[1]; \
- vp[2] = (scalar) * (n)[2]; \
- }\
- /*! accepts vector v*/
- #define VEC_UNPROJECT(vp,v,n) \
- { \
- GREAL scalar = VEC_DOT(v, n); \
- scalar = VEC_DOT(n, n)/scalar; \
- vp[0] = (scalar) * (n)[0]; \
- vp[1] = (scalar) * (n)[1]; \
- vp[2] = (scalar) * (n)[2]; \
- }\
- /*! Vector reflection -- assumes n is of unit length
- Takes vector v, reflects it against reflector n, and returns vr */
- #define VEC_REFLECT(vr,v,n) \
- { \
- GREAL dot = VEC_DOT(v, n); \
- vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
- vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
- vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
- }\
- /*! Vector blending
- Takes two vectors a, b, blends them together with two scalars */
- #define VEC_BLEND_AB(vr,sa,a,sb,b) \
- { \
- vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
- vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
- vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
- }\
- /*! Vector blending
- Takes two vectors a, b, blends them together with s <=1 */
- #define VEC_BLEND(vr,a,b,s) VEC_BLEND_AB(vr,(1-s),a,s,b)
- #define VEC_SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
- //! Finds the bigger cartesian coordinate from a vector
- #define VEC_MAYOR_COORD(vec, maxc)\
- {\
- GREAL A[] = {fabs(vec[0]),fabs(vec[1]),fabs(vec[2])};\
- maxc = A[0]>A[1]?(A[0]>A[2]?0:2):(A[1]>A[2]?1:2);\
- }\
- //! Finds the 2 smallest cartesian coordinates from a vector
- #define VEC_MINOR_AXES(vec, i0, i1)\
- {\
- VEC_MAYOR_COORD(vec,i0);\
- i0 = (i0+1)%3;\
- i1 = (i0+1)%3;\
- }\
- #define VEC_EQUAL(v1,v2) (v1[0]==v2[0]&&v1[1]==v2[1]&&v1[2]==v2[2])
- #define VEC_NEAR_EQUAL(v1,v2) (GIM_NEAR_EQUAL(v1[0],v2[0])&&GIM_NEAR_EQUAL(v1[1],v2[1])&&GIM_NEAR_EQUAL(v1[2],v2[2]))
- /// Vector cross
- #define X_AXIS_CROSS_VEC(dst,src)\
- { \
- dst[0] = 0.0f; \
- dst[1] = -src[2]; \
- dst[2] = src[1]; \
- }\
- #define Y_AXIS_CROSS_VEC(dst,src)\
- { \
- dst[0] = src[2]; \
- dst[1] = 0.0f; \
- dst[2] = -src[0]; \
- }\
- #define Z_AXIS_CROSS_VEC(dst,src)\
- { \
- dst[0] = -src[1]; \
- dst[1] = src[0]; \
- dst[2] = 0.0f; \
- }\
- /// initialize matrix
- #define IDENTIFY_MATRIX_3X3(m) \
- { \
- m[0][0] = 1.0; \
- m[0][1] = 0.0; \
- m[0][2] = 0.0; \
- \
- m[1][0] = 0.0; \
- m[1][1] = 1.0; \
- m[1][2] = 0.0; \
- \
- m[2][0] = 0.0; \
- m[2][1] = 0.0; \
- m[2][2] = 1.0; \
- }\
- /*! initialize matrix */
- #define IDENTIFY_MATRIX_4X4(m) \
- { \
- m[0][0] = 1.0; \
- m[0][1] = 0.0; \
- m[0][2] = 0.0; \
- m[0][3] = 0.0; \
- \
- m[1][0] = 0.0; \
- m[1][1] = 1.0; \
- m[1][2] = 0.0; \
- m[1][3] = 0.0; \
- \
- m[2][0] = 0.0; \
- m[2][1] = 0.0; \
- m[2][2] = 1.0; \
- m[2][3] = 0.0; \
- \
- m[3][0] = 0.0; \
- m[3][1] = 0.0; \
- m[3][2] = 0.0; \
- m[3][3] = 1.0; \
- }\
- /*! initialize matrix */
- #define ZERO_MATRIX_4X4(m) \
- { \
- m[0][0] = 0.0; \
- m[0][1] = 0.0; \
- m[0][2] = 0.0; \
- m[0][3] = 0.0; \
- \
- m[1][0] = 0.0; \
- m[1][1] = 0.0; \
- m[1][2] = 0.0; \
- m[1][3] = 0.0; \
- \
- m[2][0] = 0.0; \
- m[2][1] = 0.0; \
- m[2][2] = 0.0; \
- m[2][3] = 0.0; \
- \
- m[3][0] = 0.0; \
- m[3][1] = 0.0; \
- m[3][2] = 0.0; \
- m[3][3] = 0.0; \
- }\
- /*! matrix rotation X */
- #define ROTX_CS(m,cosine,sine) \
- { \
- /* rotation about the x-axis */ \
- \
- m[0][0] = 1.0; \
- m[0][1] = 0.0; \
- m[0][2] = 0.0; \
- m[0][3] = 0.0; \
- \
- m[1][0] = 0.0; \
- m[1][1] = (cosine); \
- m[1][2] = (sine); \
- m[1][3] = 0.0; \
- \
- m[2][0] = 0.0; \
- m[2][1] = -(sine); \
- m[2][2] = (cosine); \
- m[2][3] = 0.0; \
- \
- m[3][0] = 0.0; \
- m[3][1] = 0.0; \
- m[3][2] = 0.0; \
- m[3][3] = 1.0; \
- }\
- /*! matrix rotation Y */
- #define ROTY_CS(m,cosine,sine) \
- { \
- /* rotation about the y-axis */ \
- \
- m[0][0] = (cosine); \
- m[0][1] = 0.0; \
- m[0][2] = -(sine); \
- m[0][3] = 0.0; \
- \
- m[1][0] = 0.0; \
- m[1][1] = 1.0; \
- m[1][2] = 0.0; \
- m[1][3] = 0.0; \
- \
- m[2][0] = (sine); \
- m[2][1] = 0.0; \
- m[2][2] = (cosine); \
- m[2][3] = 0.0; \
- \
- m[3][0] = 0.0; \
- m[3][1] = 0.0; \
- m[3][2] = 0.0; \
- m[3][3] = 1.0; \
- }\
- /*! matrix rotation Z */
- #define ROTZ_CS(m,cosine,sine) \
- { \
- /* rotation about the z-axis */ \
- \
- m[0][0] = (cosine); \
- m[0][1] = (sine); \
- m[0][2] = 0.0; \
- m[0][3] = 0.0; \
- \
- m[1][0] = -(sine); \
- m[1][1] = (cosine); \
- m[1][2] = 0.0; \
- m[1][3] = 0.0; \
- \
- m[2][0] = 0.0; \
- m[2][1] = 0.0; \
- m[2][2] = 1.0; \
- m[2][3] = 0.0; \
- \
- m[3][0] = 0.0; \
- m[3][1] = 0.0; \
- m[3][2] = 0.0; \
- m[3][3] = 1.0; \
- }\
- /*! matrix copy */
- #define COPY_MATRIX_2X2(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[0][1]; \
- \
- b[1][0] = a[1][0]; \
- b[1][1] = a[1][1]; \
- \
- }\
- /*! matrix copy */
- #define COPY_MATRIX_2X3(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[0][1]; \
- b[0][2] = a[0][2]; \
- \
- b[1][0] = a[1][0]; \
- b[1][1] = a[1][1]; \
- b[1][2] = a[1][2]; \
- }\
- /*! matrix copy */
- #define COPY_MATRIX_3X3(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[0][1]; \
- b[0][2] = a[0][2]; \
- \
- b[1][0] = a[1][0]; \
- b[1][1] = a[1][1]; \
- b[1][2] = a[1][2]; \
- \
- b[2][0] = a[2][0]; \
- b[2][1] = a[2][1]; \
- b[2][2] = a[2][2]; \
- }\
- /*! matrix copy */
- #define COPY_MATRIX_4X4(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[0][1]; \
- b[0][2] = a[0][2]; \
- b[0][3] = a[0][3]; \
- \
- b[1][0] = a[1][0]; \
- b[1][1] = a[1][1]; \
- b[1][2] = a[1][2]; \
- b[1][3] = a[1][3]; \
- \
- b[2][0] = a[2][0]; \
- b[2][1] = a[2][1]; \
- b[2][2] = a[2][2]; \
- b[2][3] = a[2][3]; \
- \
- b[3][0] = a[3][0]; \
- b[3][1] = a[3][1]; \
- b[3][2] = a[3][2]; \
- b[3][3] = a[3][3]; \
- }\
- /*! matrix transpose */
- #define TRANSPOSE_MATRIX_2X2(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[1][0]; \
- \
- b[1][0] = a[0][1]; \
- b[1][1] = a[1][1]; \
- }\
- /*! matrix transpose */
- #define TRANSPOSE_MATRIX_3X3(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[1][0]; \
- b[0][2] = a[2][0]; \
- \
- b[1][0] = a[0][1]; \
- b[1][1] = a[1][1]; \
- b[1][2] = a[2][1]; \
- \
- b[2][0] = a[0][2]; \
- b[2][1] = a[1][2]; \
- b[2][2] = a[2][2]; \
- }\
- /*! matrix transpose */
- #define TRANSPOSE_MATRIX_4X4(b,a) \
- { \
- b[0][0] = a[0][0]; \
- b[0][1] = a[1][0]; \
- b[0][2] = a[2][0]; \
- b[0][3] = a[3][0]; \
- \
- b[1][0] = a[0][1]; \
- b[1][1] = a[1][1]; \
- b[1][2] = a[2][1]; \
- b[1][3] = a[3][1]; \
- \
- b[2][0] = a[0][2]; \
- b[2][1] = a[1][2]; \
- b[2][2] = a[2][2]; \
- b[2][3] = a[3][2]; \
- \
- b[3][0] = a[0][3]; \
- b[3][1] = a[1][3]; \
- b[3][2] = a[2][3]; \
- b[3][3] = a[3][3]; \
- }\
- /*! multiply matrix by scalar */
- #define SCALE_MATRIX_2X2(b,s,a) \
- { \
- b[0][0] = (s) * a[0][0]; \
- b[0][1] = (s) * a[0][1]; \
- \
- b[1][0] = (s) * a[1][0]; \
- b[1][1] = (s) * a[1][1]; \
- }\
- /*! multiply matrix by scalar */
- #define SCALE_MATRIX_3X3(b,s,a) \
- { \
- b[0][0] = (s) * a[0][0]; \
- b[0][1] = (s) * a[0][1]; \
- b[0][2] = (s) * a[0][2]; \
- \
- b[1][0] = (s) * a[1][0]; \
- b[1][1] = (s) * a[1][1]; \
- b[1][2] = (s) * a[1][2]; \
- \
- b[2][0] = (s) * a[2][0]; \
- b[2][1] = (s) * a[2][1]; \
- b[2][2] = (s) * a[2][2]; \
- }\
- /*! multiply matrix by scalar */
- #define SCALE_MATRIX_4X4(b,s,a) \
- { \
- b[0][0] = (s) * a[0][0]; \
- b[0][1] = (s) * a[0][1]; \
- b[0][2] = (s) * a[0][2]; \
- b[0][3] = (s) * a[0][3]; \
- \
- b[1][0] = (s) * a[1][0]; \
- b[1][1] = (s) * a[1][1]; \
- b[1][2] = (s) * a[1][2]; \
- b[1][3] = (s) * a[1][3]; \
- \
- b[2][0] = (s) * a[2][0]; \
- b[2][1] = (s) * a[2][1]; \
- b[2][2] = (s) * a[2][2]; \
- b[2][3] = (s) * a[2][3]; \
- \
- b[3][0] = s * a[3][0]; \
- b[3][1] = s * a[3][1]; \
- b[3][2] = s * a[3][2]; \
- b[3][3] = s * a[3][3]; \
- }\
- /*! multiply matrix by scalar */
- #define SCALE_VEC_MATRIX_2X2(b,svec,a) \
- { \
- b[0][0] = svec[0] * a[0][0]; \
- b[1][0] = svec[0] * a[1][0]; \
- \
- b[0][1] = svec[1] * a[0][1]; \
- b[1][1] = svec[1] * a[1][1]; \
- }\
- /*! multiply matrix by scalar. Each columns is scaled by each scalar vector component */
- #define SCALE_VEC_MATRIX_3X3(b,svec,a) \
- { \
- b[0][0] = svec[0] * a[0][0]; \
- b[1][0] = svec[0] * a[1][0]; \
- b[2][0] = svec[0] * a[2][0]; \
- \
- b[0][1] = svec[1] * a[0][1]; \
- b[1][1] = svec[1] * a[1][1]; \
- b[2][1] = svec[1] * a[2][1]; \
- \
- b[0][2] = svec[2] * a[0][2]; \
- b[1][2] = svec[2] * a[1][2]; \
- b[2][2] = svec[2] * a[2][2]; \
- }\
- /*! multiply matrix by scalar */
- #define SCALE_VEC_MATRIX_4X4(b,svec,a) \
- { \
- b[0][0] = svec[0] * a[0][0]; \
- b[1][0] = svec[0] * a[1][0]; \
- b[2][0] = svec[0] * a[2][0]; \
- b[3][0] = svec[0] * a[3][0]; \
- \
- b[0][1] = svec[1] * a[0][1]; \
- b[1][1] = svec[1] * a[1][1]; \
- b[2][1] = svec[1] * a[2][1]; \
- b[3][1] = svec[1] * a[3][1]; \
- \
- b[0][2] = svec[2] * a[0][2]; \
- b[1][2] = svec[2] * a[1][2]; \
- b[2][2] = svec[2] * a[2][2]; \
- b[3][2] = svec[2] * a[3][2]; \
- \
- b[0][3] = svec[3] * a[0][3]; \
- b[1][3] = svec[3] * a[1][3]; \
- b[2][3] = svec[3] * a[2][3]; \
- b[3][3] = svec[3] * a[3][3]; \
- }\
- /*! multiply matrix by scalar */
- #define ACCUM_SCALE_MATRIX_2X2(b,s,a) \
- { \
- b[0][0] += (s) * a[0][0]; \
- b[0][1] += (s) * a[0][1]; \
- \
- b[1][0] += (s) * a[1][0]; \
- b[1][1] += (s) * a[1][1]; \
- }\
- /*! multiply matrix by scalar */
- #define ACCUM_SCALE_MATRIX_3X3(b,s,a) \
- { \
- b[0][0] += (s) * a[0][0]; \
- b[0][1] += (s) * a[0][1]; \
- b[0][2] += (s) * a[0][2]; \
- \
- b[1][0] += (s) * a[1][0]; \
- b[1][1] += (s) * a[1][1]; \
- b[1][2] += (s) * a[1][2]; \
- \
- b[2][0] += (s) * a[2][0]; \
- b[2][1] += (s) * a[2][1]; \
- b[2][2] += (s) * a[2][2]; \
- }\
- /*! multiply matrix by scalar */
- #define ACCUM_SCALE_MATRIX_4X4(b,s,a) \
- { \
- b[0][0] += (s) * a[0][0]; \
- b[0][1] += (s) * a[0][1]; \
- b[0][2] += (s) * a[0][2]; \
- b[0][3] += (s) * a[0][3]; \
- \
- b[1][0] += (s) * a[1][0]; \
- b[1][1] += (s) * a[1][1]; \
- b[1][2] += (s) * a[1][2]; \
- b[1][3] += (s) * a[1][3]; \
- \
- b[2][0] += (s) * a[2][0]; \
- b[2][1] += (s) * a[2][1]; \
- b[2][2] += (s) * a[2][2]; \
- b[2][3] += (s) * a[2][3]; \
- \
- b[3][0] += (s) * a[3][0]; \
- b[3][1] += (s) * a[3][1]; \
- b[3][2] += (s) * a[3][2]; \
- b[3][3] += (s) * a[3][3]; \
- }\
- /*! matrix product */
- /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
- #define MATRIX_PRODUCT_2X2(c,a,b) \
- { \
- c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]; \
- c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]; \
- \
- c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]; \
- c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]; \
- \
- }\
- /*! matrix product */
- /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
- #define MATRIX_PRODUCT_3X3(c,a,b) \
- { \
- c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; \
- c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; \
- c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; \
- \
- c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; \
- c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; \
- c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; \
- \
- c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; \
- c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; \
- c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; \
- }\
- /*! matrix product */
- /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
- #define MATRIX_PRODUCT_4X4(c,a,b) \
- { \
- c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\
- c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\
- c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\
- c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\
- \
- c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\
- c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\
- c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\
- c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\
- \
- c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\
- c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\
- c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\
- c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\
- \
- c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\
- c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\
- c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\
- c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\
- }\
- /*! matrix times vector */
- #define MAT_DOT_VEC_2X2(p,m,v) \
- { \
- p[0] = m[0][0]*v[0] + m[0][1]*v[1]; \
- p[1] = m[1][0]*v[0] + m[1][1]*v[1]; \
- }\
- /*! matrix times vector */
- #define MAT_DOT_VEC_3X3(p,m,v) \
- { \
- p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; \
- p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; \
- p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; \
- }\
- /*! matrix times vector
- v is a vec4f
- */
- #define MAT_DOT_VEC_4X4(p,m,v) \
- { \
- p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3]; \
- p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3]; \
- p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3]; \
- p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3]; \
- }\
- /*! matrix times vector
- v is a vec3f
- and m is a mat4f<br>
- Last column is added as the position
- */
- #define MAT_DOT_VEC_3X4(p,m,v) \
- { \
- p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]; \
- p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]; \
- p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]; \
- }\
- /*! vector transpose times matrix */
- /*! p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */
- #define VEC_DOT_MAT_3X3(p,v,m) \
- { \
- p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0]; \
- p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1]; \
- p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2]; \
- }\
- /*! affine matrix times vector */
- /** The matrix is assumed to be an affine matrix, with last two
- * entries representing a translation */
- #define MAT_DOT_VEC_2X3(p,m,v) \
- { \
- p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]; \
- p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]; \
- }\
- //! Transform a plane
- #define MAT_TRANSFORM_PLANE_4X4(pout,m,plane)\
- { \
- pout[0] = m[0][0]*plane[0] + m[0][1]*plane[1] + m[0][2]*plane[2];\
- pout[1] = m[1][0]*plane[0] + m[1][1]*plane[1] + m[1][2]*plane[2];\
- pout[2] = m[2][0]*plane[0] + m[2][1]*plane[1] + m[2][2]*plane[2];\
- pout[3] = m[0][3]*pout[0] + m[1][3]*pout[1] + m[2][3]*pout[2] + plane[3];\
- }\
- /** inverse transpose of matrix times vector
- *
- * This macro computes inverse transpose of matrix m,
- * and multiplies vector v into it, to yeild vector p
- *
- * DANGER !!! Do Not use this on normal vectors!!!
- * It will leave normals the wrong length !!!
- * See macro below for use on normals.
- */
- #define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v) \
- { \
- GREAL det; \
- \
- det = m[0][0]*m[1][1] - m[0][1]*m[1][0]; \
- p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
- p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
- \
- /* if matrix not singular, and not orthonormal, then renormalize */ \
- if ((det!=1.0f) && (det != 0.0f)) { \
- det = 1.0f / det; \
- p[0] *= det; \
- p[1] *= det; \
- } \
- }\
- /** transform normal vector by inverse transpose of matrix
- * and then renormalize the vector
- *
- * This macro computes inverse transpose of matrix m,
- * and multiplies vector v into it, to yeild vector p
- * Vector p is then normalized.
- */
- #define NORM_XFORM_2X2(p,m,v) \
- { \
- GREAL len; \
- \
- /* do nothing if off-diagonals are zero and diagonals are \
- * equal */ \
- if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) { \
- p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
- p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
- \
- len = p[0]*p[0] + p[1]*p[1]; \
- GIM_INV_SQRT(len,len); \
- p[0] *= len; \
- p[1] *= len; \
- } else { \
- VEC_COPY_2 (p, v); \
- } \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define OUTER_PRODUCT_2X2(m,v,t) \
- { \
- m[0][0] = v[0] * t[0]; \
- m[0][1] = v[0] * t[1]; \
- \
- m[1][0] = v[1] * t[0]; \
- m[1][1] = v[1] * t[1]; \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define OUTER_PRODUCT_3X3(m,v,t) \
- { \
- m[0][0] = v[0] * t[0]; \
- m[0][1] = v[0] * t[1]; \
- m[0][2] = v[0] * t[2]; \
- \
- m[1][0] = v[1] * t[0]; \
- m[1][1] = v[1] * t[1]; \
- m[1][2] = v[1] * t[2]; \
- \
- m[2][0] = v[2] * t[0]; \
- m[2][1] = v[2] * t[1]; \
- m[2][2] = v[2] * t[2]; \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define OUTER_PRODUCT_4X4(m,v,t) \
- { \
- m[0][0] = v[0] * t[0]; \
- m[0][1] = v[0] * t[1]; \
- m[0][2] = v[0] * t[2]; \
- m[0][3] = v[0] * t[3]; \
- \
- m[1][0] = v[1] * t[0]; \
- m[1][1] = v[1] * t[1]; \
- m[1][2] = v[1] * t[2]; \
- m[1][3] = v[1] * t[3]; \
- \
- m[2][0] = v[2] * t[0]; \
- m[2][1] = v[2] * t[1]; \
- m[2][2] = v[2] * t[2]; \
- m[2][3] = v[2] * t[3]; \
- \
- m[3][0] = v[3] * t[0]; \
- m[3][1] = v[3] * t[1]; \
- m[3][2] = v[3] * t[2]; \
- m[3][3] = v[3] * t[3]; \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define ACCUM_OUTER_PRODUCT_2X2(m,v,t) \
- { \
- m[0][0] += v[0] * t[0]; \
- m[0][1] += v[0] * t[1]; \
- \
- m[1][0] += v[1] * t[0]; \
- m[1][1] += v[1] * t[1]; \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define ACCUM_OUTER_PRODUCT_3X3(m,v,t) \
- { \
- m[0][0] += v[0] * t[0]; \
- m[0][1] += v[0] * t[1]; \
- m[0][2] += v[0] * t[2]; \
- \
- m[1][0] += v[1] * t[0]; \
- m[1][1] += v[1] * t[1]; \
- m[1][2] += v[1] * t[2]; \
- \
- m[2][0] += v[2] * t[0]; \
- m[2][1] += v[2] * t[1]; \
- m[2][2] += v[2] * t[2]; \
- }\
- /** outer product of vector times vector transpose
- *
- * The outer product of vector v and vector transpose t yeilds
- * dyadic matrix m.
- */
- #define ACCUM_OUTER_PRODUCT_4X4(m,v,t) \
- { \
- m[0][0] += v[0] * t[0]; \
- m[0][1] += v[0] * t[1]; \
- m[0][2] += v[0] * t[2]; \
- m[0][3] += v[0] * t[3]; \
- \
- m[1][0] += v[1] * t[0]; \
- m[1][1] += v[1] * t[1]; \
- m[1][2] += v[1] * t[2]; \
- m[1][3] += v[1] * t[3]; \
- \
- m[2][0] += v[2] * t[0]; \
- m[2][1] += v[2] * t[1]; \
- m[2][2] += v[2] * t[2]; \
- m[2][3] += v[2] * t[3]; \
- \
- m[3][0] += v[3] * t[0]; \
- m[3][1] += v[3] * t[1]; \
- m[3][2] += v[3] * t[2]; \
- m[3][3] += v[3] * t[3]; \
- }\
- /** determinant of matrix
- *
- * Computes determinant of matrix m, returning d
- */
- #define DETERMINANT_2X2(d,m) \
- { \
- d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
- }\
- /** determinant of matrix
- *
- * Computes determinant of matrix m, returning d
- */
- #define DETERMINANT_3X3(d,m) \
- { \
- d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); \
- d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); \
- d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); \
- }\
- /** i,j,th cofactor of a 4x4 matrix
- *
- */
- #define COFACTOR_4X4_IJ(fac,m,i,j) \
- { \
- GUINT __ii[4], __jj[4], __k; \
- \
- for (__k=0; __k<i; __k++) __ii[__k] = __k; \
- for (__k=i; __k<3; __k++) __ii[__k] = __k+1; \
- for (__k=0; __k<j; __k++) __jj[__k] = __k; \
- for (__k=j; __k<3; __k++) __jj[__k] = __k+1; \
- \
- (fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[2]] \
- - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[1]]); \
- (fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[2]] \
- - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[0]]);\
- (fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[1]] \
- - m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[0]]);\
- \
- __k = i+j; \
- if ( __k != (__k/2)*2) { \
- (fac) = -(fac); \
- } \
- }\
- /** determinant of matrix
- *
- * Computes determinant of matrix m, returning d
- */
- #define DETERMINANT_4X4(d,m) \
- { \
- GREAL cofac; \
- COFACTOR_4X4_IJ (cofac, m, 0, 0); \
- d = m[0][0] * cofac; \
- COFACTOR_4X4_IJ (cofac, m, 0, 1); \
- d += m[0][1] * cofac; \
- COFACTOR_4X4_IJ (cofac, m, 0, 2); \
- d += m[0][2] * cofac; \
- COFACTOR_4X4_IJ (cofac, m, 0, 3); \
- d += m[0][3] * cofac; \
- }\
- /** cofactor of matrix
- *
- * Computes cofactor of matrix m, returning a
- */
- #define COFACTOR_2X2(a,m) \
- { \
- a[0][0] = (m)[1][1]; \
- a[0][1] = - (m)[1][0]; \
- a[1][0] = - (m)[0][1]; \
- a[1][1] = (m)[0][0]; \
- }\
- /** cofactor of matrix
- *
- * Computes cofactor of matrix m, returning a
- */
- #define COFACTOR_3X3(a,m) \
- { \
- a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
- a[0][1] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
- a[0][2] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
- a[1][0] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
- a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
- a[1][2] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
- a[2][0] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
- a[2][1] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
- a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
- }\
- /** cofactor of matrix
- *
- * Computes cofactor of matrix m, returning a
- */
- #define COFACTOR_4X4(a,m) \
- { \
- int i,j; \
- \
- for (i=0; i<4; i++) { \
- for (j=0; j<4; j++) { \
- COFACTOR_4X4_IJ (a[i][j], m, i, j); \
- } \
- } \
- }\
- /** adjoint of matrix
- *
- * Computes adjoint of matrix m, returning a
- * (Note that adjoint is just the transpose of the cofactor matrix)
- */
- #define ADJOINT_2X2(a,m) \
- { \
- a[0][0] = (m)[1][1]; \
- a[1][0] = - (m)[1][0]; \
- a[0][1] = - (m)[0][1]; \
- a[1][1] = (m)[0][0]; \
- }\
- /** adjoint of matrix
- *
- * Computes adjoint of matrix m, returning a
- * (Note that adjoint is just the transpose of the cofactor matrix)
- */
- #define ADJOINT_3X3(a,m) \
- { \
- a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
- a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
- a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
- a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
- a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
- a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
- a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
- a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
- a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
- }\
- /** adjoint of matrix
- *
- * Computes adjoint of matrix m, returning a
- * (Note that adjoint is just the transpose of the cofactor matrix)
- */
- #define ADJOINT_4X4(a,m) \
- { \
- char _i_,_j_; \
- \
- for (_i_=0; _i_<4; _i_++) { \
- for (_j_=0; _j_<4; _j_++) { \
- COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
- } \
- } \
- }\
- /** compute adjoint of matrix and scale
- *
- * Computes adjoint of matrix m, scales it by s, returning a
- */
- #define SCALE_ADJOINT_2X2(a,s,m) \
- { \
- a[0][0] = (s) * m[1][1]; \
- a[1][0] = - (s) * m[1][0]; \
- a[0][1] = - (s) * m[0][1]; \
- a[1][1] = (s) * m[0][0]; \
- }\
- /** compute adjoint of matrix and scale
- *
- * Computes adjoint of matrix m, scales it by s, returning a
- */
- #define SCALE_ADJOINT_3X3(a,s,m) \
- { \
- a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
- a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
- a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
- \
- a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
- a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
- a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
- \
- a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
- a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
- a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
- }\
- /** compute adjoint of matrix and scale
- *
- * Computes adjoint of matrix m, scales it by s, returning a
- */
- #define SCALE_ADJOINT_4X4(a,s,m) \
- { \
- char _i_,_j_; \
- for (_i_=0; _i_<4; _i_++) { \
- for (_j_=0; _j_<4; _j_++) { \
- COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
- a[_j_][_i_] *= s; \
- } \
- } \
- }\
- /** inverse of matrix
- *
- * Compute inverse of matrix a, returning determinant m and
- * inverse b
- */
- #define INVERT_2X2(b,det,a) \
- { \
- GREAL _tmp_; \
- DETERMINANT_2X2 (det, a); \
- _tmp_ = 1.0 / (det); \
- SCALE_ADJOINT_2X2 (b, _tmp_, a); \
- }\
- /** inverse of matrix
- *
- * Compute inverse of matrix a, returning determinant m and
- * inverse b
- */
- #define INVERT_3X3(b,det,a) \
- { \
- GREAL _tmp_; \
- DETERMINANT_3X3 (det, a); \
- _tmp_ = 1.0 / (det); \
- SCALE_ADJOINT_3X3 (b, _tmp_, a); \
- }\
- /** inverse of matrix
- *
- * Compute inverse of matrix a, returning determinant m and
- * inverse b
- */
- #define INVERT_4X4(b,det,a) \
- { \
- GREAL _tmp_; \
- DETERMINANT_4X4 (det, a); \
- _tmp_ = 1.0 / (det); \
- SCALE_ADJOINT_4X4 (b, _tmp_, a); \
- }\
- //! Get the triple(3) row of a transform matrix
- #define MAT_GET_ROW(mat,vec3,rowindex)\
- {\
- vec3[0] = mat[rowindex][0];\
- vec3[1] = mat[rowindex][1];\
- vec3[2] = mat[rowindex][2]; \
- }\
- //! Get the tuple(2) row of a transform matrix
- #define MAT_GET_ROW2(mat,vec2,rowindex)\
- {\
- vec2[0] = mat[rowindex][0];\
- vec2[1] = mat[rowindex][1];\
- }\
- //! Get the quad (4) row of a transform matrix
- #define MAT_GET_ROW4(mat,vec4,rowindex)\
- {\
- vec4[0] = mat[rowindex][0];\
- vec4[1] = mat[rowindex][1];\
- vec4[2] = mat[rowindex][2];\
- vec4[3] = mat[rowindex][3];\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_GET_COL(mat,vec3,colindex)\
- {\
- vec3[0] = mat[0][colindex];\
- vec3[1] = mat[1][colindex];\
- vec3[2] = mat[2][colindex]; \
- }\
- //! Get the tuple(2) col of a transform matrix
- #define MAT_GET_COL2(mat,vec2,colindex)\
- {\
- vec2[0] = mat[0][colindex];\
- vec2[1] = mat[1][colindex];\
- }\
- //! Get the quad (4) col of a transform matrix
- #define MAT_GET_COL4(mat,vec4,colindex)\
- {\
- vec4[0] = mat[0][colindex];\
- vec4[1] = mat[1][colindex];\
- vec4[2] = mat[2][colindex];\
- vec4[3] = mat[3][colindex];\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_GET_X(mat,vec3)\
- {\
- MAT_GET_COL(mat,vec3,0);\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_GET_Y(mat,vec3)\
- {\
- MAT_GET_COL(mat,vec3,1);\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_GET_Z(mat,vec3)\
- {\
- MAT_GET_COL(mat,vec3,2);\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_SET_X(mat,vec3)\
- {\
- mat[0][0] = vec3[0];\
- mat[1][0] = vec3[1];\
- mat[2][0] = vec3[2];\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_SET_Y(mat,vec3)\
- {\
- mat[0][1] = vec3[0];\
- mat[1][1] = vec3[1];\
- mat[2][1] = vec3[2];\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_SET_Z(mat,vec3)\
- {\
- mat[0][2] = vec3[0];\
- mat[1][2] = vec3[1];\
- mat[2][2] = vec3[2];\
- }\
- //! Get the triple(3) col of a transform matrix
- #define MAT_GET_TRANSLATION(mat,vec3)\
- {\
- vec3[0] = mat[0][3];\
- vec3[1] = mat[1][3];\
- vec3[2] = mat[2][3]; \
- }\
- //! Set the triple(3) col of a transform matrix
- #define MAT_SET_TRANSLATION(mat,vec3)\
- {\
- mat[0][3] = vec3[0];\
- mat[1][3] = vec3[1];\
- mat[2][3] = vec3[2]; \
- }\
- //! Returns the dot product between a vec3f and the row of a matrix
- #define MAT_DOT_ROW(mat,vec3,rowindex) (vec3[0]*mat[rowindex][0] + vec3[1]*mat[rowindex][1] + vec3[2]*mat[rowindex][2])
- //! Returns the dot product between a vec2f and the row of a matrix
- #define MAT_DOT_ROW2(mat,vec2,rowindex) (vec2[0]*mat[rowindex][0] + vec2[1]*mat[rowindex][1])
- //! Returns the dot product between a vec4f and the row of a matrix
- #define MAT_DOT_ROW4(mat,vec4,rowindex) (vec4[0]*mat[rowindex][0] + vec4[1]*mat[rowindex][1] + vec4[2]*mat[rowindex][2] + vec4[3]*mat[rowindex][3])
- //! Returns the dot product between a vec3f and the col of a matrix
- #define MAT_DOT_COL(mat,vec3,colindex) (vec3[0]*mat[0][colindex] + vec3[1]*mat[1][colindex] + vec3[2]*mat[2][colindex])
- //! Returns the dot product between a vec2f and the col of a matrix
- #define MAT_DOT_COL2(mat,vec2,colindex) (vec2[0]*mat[0][colindex] + vec2[1]*mat[1][colindex])
- //! Returns the dot product between a vec4f and the col of a matrix
- #define MAT_DOT_COL4(mat,vec4,colindex) (vec4[0]*mat[0][colindex] + vec4[1]*mat[1][colindex] + vec4[2]*mat[2][colindex] + vec4[3]*mat[3][colindex])
- /*!Transpose matrix times vector
- v is a vec3f
- and m is a mat4f<br>
- */
- #define INV_MAT_DOT_VEC_3X3(p,m,v) \
- { \
- p[0] = MAT_DOT_COL(m,v,0); \
- p[1] = MAT_DOT_COL(m,v,1); \
- p[2] = MAT_DOT_COL(m,v,2); \
- }\
- #endif // GIM_VECTOR_H_INCLUDED
|