gim_linear_math.h 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574
  1. #ifndef GIM_LINEAR_H_INCLUDED
  2. #define GIM_LINEAR_H_INCLUDED
  3. /*! \file gim_linear_math.h
  4. *\author Francisco Leon Najera
  5. Type Independant Vector and matrix operations.
  6. */
  7. /*
  8. -----------------------------------------------------------------------------
  9. This source file is part of GIMPACT Library.
  10. For the latest info, see http://gimpact.sourceforge.net/
  11. Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
  12. email: projectileman@yahoo.com
  13. This library is free software; you can redistribute it and/or
  14. modify it under the terms of EITHER:
  15. (1) The GNU Lesser General Public License as published by the Free
  16. Software Foundation; either version 2.1 of the License, or (at
  17. your option) any later version. The text of the GNU Lesser
  18. General Public License is included with this library in the
  19. file GIMPACT-LICENSE-LGPL.TXT.
  20. (2) The BSD-style license that is included with this library in
  21. the file GIMPACT-LICENSE-BSD.TXT.
  22. (3) The zlib/libpng license that is included with this library in
  23. the file GIMPACT-LICENSE-ZLIB.TXT.
  24. This library is distributed in the hope that it will be useful,
  25. but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
  27. GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
  28. -----------------------------------------------------------------------------
  29. */
  30. #include "gim_math.h"
  31. #include "gim_geom_types.h"
  32. //! Zero out a 2D vector
  33. #define VEC_ZERO_2(a) \
  34. { \
  35. (a)[0] = (a)[1] = 0.0f; \
  36. }\
  37. //! Zero out a 3D vector
  38. #define VEC_ZERO(a) \
  39. { \
  40. (a)[0] = (a)[1] = (a)[2] = 0.0f; \
  41. }\
  42. /// Zero out a 4D vector
  43. #define VEC_ZERO_4(a) \
  44. { \
  45. (a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f; \
  46. }\
  47. /// Vector copy
  48. #define VEC_COPY_2(b,a) \
  49. { \
  50. (b)[0] = (a)[0]; \
  51. (b)[1] = (a)[1]; \
  52. }\
  53. /// Copy 3D vector
  54. #define VEC_COPY(b,a) \
  55. { \
  56. (b)[0] = (a)[0]; \
  57. (b)[1] = (a)[1]; \
  58. (b)[2] = (a)[2]; \
  59. }\
  60. /// Copy 4D vector
  61. #define VEC_COPY_4(b,a) \
  62. { \
  63. (b)[0] = (a)[0]; \
  64. (b)[1] = (a)[1]; \
  65. (b)[2] = (a)[2]; \
  66. (b)[3] = (a)[3]; \
  67. }\
  68. /// VECTOR SWAP
  69. #define VEC_SWAP(b,a) \
  70. { \
  71. GIM_SWAP_NUMBERS((b)[0],(a)[0]);\
  72. GIM_SWAP_NUMBERS((b)[1],(a)[1]);\
  73. GIM_SWAP_NUMBERS((b)[2],(a)[2]);\
  74. }\
  75. /// Vector difference
  76. #define VEC_DIFF_2(v21,v2,v1) \
  77. { \
  78. (v21)[0] = (v2)[0] - (v1)[0]; \
  79. (v21)[1] = (v2)[1] - (v1)[1]; \
  80. }\
  81. /// Vector difference
  82. #define VEC_DIFF(v21,v2,v1) \
  83. { \
  84. (v21)[0] = (v2)[0] - (v1)[0]; \
  85. (v21)[1] = (v2)[1] - (v1)[1]; \
  86. (v21)[2] = (v2)[2] - (v1)[2]; \
  87. }\
  88. /// Vector difference
  89. #define VEC_DIFF_4(v21,v2,v1) \
  90. { \
  91. (v21)[0] = (v2)[0] - (v1)[0]; \
  92. (v21)[1] = (v2)[1] - (v1)[1]; \
  93. (v21)[2] = (v2)[2] - (v1)[2]; \
  94. (v21)[3] = (v2)[3] - (v1)[3]; \
  95. }\
  96. /// Vector sum
  97. #define VEC_SUM_2(v21,v2,v1) \
  98. { \
  99. (v21)[0] = (v2)[0] + (v1)[0]; \
  100. (v21)[1] = (v2)[1] + (v1)[1]; \
  101. }\
  102. /// Vector sum
  103. #define VEC_SUM(v21,v2,v1) \
  104. { \
  105. (v21)[0] = (v2)[0] + (v1)[0]; \
  106. (v21)[1] = (v2)[1] + (v1)[1]; \
  107. (v21)[2] = (v2)[2] + (v1)[2]; \
  108. }\
  109. /// Vector sum
  110. #define VEC_SUM_4(v21,v2,v1) \
  111. { \
  112. (v21)[0] = (v2)[0] + (v1)[0]; \
  113. (v21)[1] = (v2)[1] + (v1)[1]; \
  114. (v21)[2] = (v2)[2] + (v1)[2]; \
  115. (v21)[3] = (v2)[3] + (v1)[3]; \
  116. }\
  117. /// scalar times vector
  118. #define VEC_SCALE_2(c,a,b) \
  119. { \
  120. (c)[0] = (a)*(b)[0]; \
  121. (c)[1] = (a)*(b)[1]; \
  122. }\
  123. /// scalar times vector
  124. #define VEC_SCALE(c,a,b) \
  125. { \
  126. (c)[0] = (a)*(b)[0]; \
  127. (c)[1] = (a)*(b)[1]; \
  128. (c)[2] = (a)*(b)[2]; \
  129. }\
  130. /// scalar times vector
  131. #define VEC_SCALE_4(c,a,b) \
  132. { \
  133. (c)[0] = (a)*(b)[0]; \
  134. (c)[1] = (a)*(b)[1]; \
  135. (c)[2] = (a)*(b)[2]; \
  136. (c)[3] = (a)*(b)[3]; \
  137. }\
  138. /// accumulate scaled vector
  139. #define VEC_ACCUM_2(c,a,b) \
  140. { \
  141. (c)[0] += (a)*(b)[0]; \
  142. (c)[1] += (a)*(b)[1]; \
  143. }\
  144. /// accumulate scaled vector
  145. #define VEC_ACCUM(c,a,b) \
  146. { \
  147. (c)[0] += (a)*(b)[0]; \
  148. (c)[1] += (a)*(b)[1]; \
  149. (c)[2] += (a)*(b)[2]; \
  150. }\
  151. /// accumulate scaled vector
  152. #define VEC_ACCUM_4(c,a,b) \
  153. { \
  154. (c)[0] += (a)*(b)[0]; \
  155. (c)[1] += (a)*(b)[1]; \
  156. (c)[2] += (a)*(b)[2]; \
  157. (c)[3] += (a)*(b)[3]; \
  158. }\
  159. /// Vector dot product
  160. #define VEC_DOT_2(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1])
  161. /// Vector dot product
  162. #define VEC_DOT(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2])
  163. /// Vector dot product
  164. #define VEC_DOT_4(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] + (a)[3]*(b)[3])
  165. /// vector impact parameter (squared)
  166. #define VEC_IMPACT_SQ(bsq,direction,position) {\
  167. GREAL _llel_ = VEC_DOT(direction, position);\
  168. bsq = VEC_DOT(position, position) - _llel_*_llel_;\
  169. }\
  170. /// vector impact parameter
  171. #define VEC_IMPACT(bsq,direction,position) {\
  172. VEC_IMPACT_SQ(bsq,direction,position); \
  173. GIM_SQRT(bsq,bsq); \
  174. }\
  175. /// Vector length
  176. #define VEC_LENGTH_2(a,l)\
  177. {\
  178. GREAL _pp = VEC_DOT_2(a,a);\
  179. GIM_SQRT(_pp,l);\
  180. }\
  181. /// Vector length
  182. #define VEC_LENGTH(a,l)\
  183. {\
  184. GREAL _pp = VEC_DOT(a,a);\
  185. GIM_SQRT(_pp,l);\
  186. }\
  187. /// Vector length
  188. #define VEC_LENGTH_4(a,l)\
  189. {\
  190. GREAL _pp = VEC_DOT_4(a,a);\
  191. GIM_SQRT(_pp,l);\
  192. }\
  193. /// Vector inv length
  194. #define VEC_INV_LENGTH_2(a,l)\
  195. {\
  196. GREAL _pp = VEC_DOT_2(a,a);\
  197. GIM_INV_SQRT(_pp,l);\
  198. }\
  199. /// Vector inv length
  200. #define VEC_INV_LENGTH(a,l)\
  201. {\
  202. GREAL _pp = VEC_DOT(a,a);\
  203. GIM_INV_SQRT(_pp,l);\
  204. }\
  205. /// Vector inv length
  206. #define VEC_INV_LENGTH_4(a,l)\
  207. {\
  208. GREAL _pp = VEC_DOT_4(a,a);\
  209. GIM_INV_SQRT(_pp,l);\
  210. }\
  211. /// distance between two points
  212. #define VEC_DISTANCE(_len,_va,_vb) {\
  213. vec3f _tmp_; \
  214. VEC_DIFF(_tmp_, _vb, _va); \
  215. VEC_LENGTH(_tmp_,_len); \
  216. }\
  217. /// Vector length
  218. #define VEC_CONJUGATE_LENGTH(a,l)\
  219. {\
  220. GREAL _pp = 1.0 - a[0]*a[0] - a[1]*a[1] - a[2]*a[2];\
  221. GIM_SQRT(_pp,l);\
  222. }\
  223. /// Vector length
  224. #define VEC_NORMALIZE(a) { \
  225. GREAL len;\
  226. VEC_INV_LENGTH(a,len); \
  227. if(len<G_REAL_INFINITY)\
  228. {\
  229. a[0] *= len; \
  230. a[1] *= len; \
  231. a[2] *= len; \
  232. } \
  233. }\
  234. /// Set Vector size
  235. #define VEC_RENORMALIZE(a,newlen) { \
  236. GREAL len;\
  237. VEC_INV_LENGTH(a,len); \
  238. if(len<G_REAL_INFINITY)\
  239. {\
  240. len *= newlen;\
  241. a[0] *= len; \
  242. a[1] *= len; \
  243. a[2] *= len; \
  244. } \
  245. }\
  246. /// Vector cross
  247. #define VEC_CROSS(c,a,b) \
  248. { \
  249. c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
  250. c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
  251. c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
  252. }\
  253. /*! Vector perp -- assumes that n is of unit length
  254. * accepts vector v, subtracts out any component parallel to n */
  255. #define VEC_PERPENDICULAR(vp,v,n) \
  256. { \
  257. GREAL dot = VEC_DOT(v, n); \
  258. vp[0] = (v)[0] - dot*(n)[0]; \
  259. vp[1] = (v)[1] - dot*(n)[1]; \
  260. vp[2] = (v)[2] - dot*(n)[2]; \
  261. }\
  262. /*! Vector parallel -- assumes that n is of unit length */
  263. #define VEC_PARALLEL(vp,v,n) \
  264. { \
  265. GREAL dot = VEC_DOT(v, n); \
  266. vp[0] = (dot) * (n)[0]; \
  267. vp[1] = (dot) * (n)[1]; \
  268. vp[2] = (dot) * (n)[2]; \
  269. }\
  270. /*! Same as Vector parallel -- n can have any length
  271. * accepts vector v, subtracts out any component perpendicular to n */
  272. #define VEC_PROJECT(vp,v,n) \
  273. { \
  274. GREAL scalar = VEC_DOT(v, n); \
  275. scalar/= VEC_DOT(n, n); \
  276. vp[0] = (scalar) * (n)[0]; \
  277. vp[1] = (scalar) * (n)[1]; \
  278. vp[2] = (scalar) * (n)[2]; \
  279. }\
  280. /*! accepts vector v*/
  281. #define VEC_UNPROJECT(vp,v,n) \
  282. { \
  283. GREAL scalar = VEC_DOT(v, n); \
  284. scalar = VEC_DOT(n, n)/scalar; \
  285. vp[0] = (scalar) * (n)[0]; \
  286. vp[1] = (scalar) * (n)[1]; \
  287. vp[2] = (scalar) * (n)[2]; \
  288. }\
  289. /*! Vector reflection -- assumes n is of unit length
  290. Takes vector v, reflects it against reflector n, and returns vr */
  291. #define VEC_REFLECT(vr,v,n) \
  292. { \
  293. GREAL dot = VEC_DOT(v, n); \
  294. vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
  295. vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
  296. vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
  297. }\
  298. /*! Vector blending
  299. Takes two vectors a, b, blends them together with two scalars */
  300. #define VEC_BLEND_AB(vr,sa,a,sb,b) \
  301. { \
  302. vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
  303. vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
  304. vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
  305. }\
  306. /*! Vector blending
  307. Takes two vectors a, b, blends them together with s <=1 */
  308. #define VEC_BLEND(vr,a,b,s) VEC_BLEND_AB(vr,(1-s),a,s,b)
  309. #define VEC_SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
  310. //! Finds the bigger cartesian coordinate from a vector
  311. #define VEC_MAYOR_COORD(vec, maxc)\
  312. {\
  313. GREAL A[] = {fabs(vec[0]),fabs(vec[1]),fabs(vec[2])};\
  314. maxc = A[0]>A[1]?(A[0]>A[2]?0:2):(A[1]>A[2]?1:2);\
  315. }\
  316. //! Finds the 2 smallest cartesian coordinates from a vector
  317. #define VEC_MINOR_AXES(vec, i0, i1)\
  318. {\
  319. VEC_MAYOR_COORD(vec,i0);\
  320. i0 = (i0+1)%3;\
  321. i1 = (i0+1)%3;\
  322. }\
  323. #define VEC_EQUAL(v1,v2) (v1[0]==v2[0]&&v1[1]==v2[1]&&v1[2]==v2[2])
  324. #define VEC_NEAR_EQUAL(v1,v2) (GIM_NEAR_EQUAL(v1[0],v2[0])&&GIM_NEAR_EQUAL(v1[1],v2[1])&&GIM_NEAR_EQUAL(v1[2],v2[2]))
  325. /// Vector cross
  326. #define X_AXIS_CROSS_VEC(dst,src)\
  327. { \
  328. dst[0] = 0.0f; \
  329. dst[1] = -src[2]; \
  330. dst[2] = src[1]; \
  331. }\
  332. #define Y_AXIS_CROSS_VEC(dst,src)\
  333. { \
  334. dst[0] = src[2]; \
  335. dst[1] = 0.0f; \
  336. dst[2] = -src[0]; \
  337. }\
  338. #define Z_AXIS_CROSS_VEC(dst,src)\
  339. { \
  340. dst[0] = -src[1]; \
  341. dst[1] = src[0]; \
  342. dst[2] = 0.0f; \
  343. }\
  344. /// initialize matrix
  345. #define IDENTIFY_MATRIX_3X3(m) \
  346. { \
  347. m[0][0] = 1.0; \
  348. m[0][1] = 0.0; \
  349. m[0][2] = 0.0; \
  350. \
  351. m[1][0] = 0.0; \
  352. m[1][1] = 1.0; \
  353. m[1][2] = 0.0; \
  354. \
  355. m[2][0] = 0.0; \
  356. m[2][1] = 0.0; \
  357. m[2][2] = 1.0; \
  358. }\
  359. /*! initialize matrix */
  360. #define IDENTIFY_MATRIX_4X4(m) \
  361. { \
  362. m[0][0] = 1.0; \
  363. m[0][1] = 0.0; \
  364. m[0][2] = 0.0; \
  365. m[0][3] = 0.0; \
  366. \
  367. m[1][0] = 0.0; \
  368. m[1][1] = 1.0; \
  369. m[1][2] = 0.0; \
  370. m[1][3] = 0.0; \
  371. \
  372. m[2][0] = 0.0; \
  373. m[2][1] = 0.0; \
  374. m[2][2] = 1.0; \
  375. m[2][3] = 0.0; \
  376. \
  377. m[3][0] = 0.0; \
  378. m[3][1] = 0.0; \
  379. m[3][2] = 0.0; \
  380. m[3][3] = 1.0; \
  381. }\
  382. /*! initialize matrix */
  383. #define ZERO_MATRIX_4X4(m) \
  384. { \
  385. m[0][0] = 0.0; \
  386. m[0][1] = 0.0; \
  387. m[0][2] = 0.0; \
  388. m[0][3] = 0.0; \
  389. \
  390. m[1][0] = 0.0; \
  391. m[1][1] = 0.0; \
  392. m[1][2] = 0.0; \
  393. m[1][3] = 0.0; \
  394. \
  395. m[2][0] = 0.0; \
  396. m[2][1] = 0.0; \
  397. m[2][2] = 0.0; \
  398. m[2][3] = 0.0; \
  399. \
  400. m[3][0] = 0.0; \
  401. m[3][1] = 0.0; \
  402. m[3][2] = 0.0; \
  403. m[3][3] = 0.0; \
  404. }\
  405. /*! matrix rotation X */
  406. #define ROTX_CS(m,cosine,sine) \
  407. { \
  408. /* rotation about the x-axis */ \
  409. \
  410. m[0][0] = 1.0; \
  411. m[0][1] = 0.0; \
  412. m[0][2] = 0.0; \
  413. m[0][3] = 0.0; \
  414. \
  415. m[1][0] = 0.0; \
  416. m[1][1] = (cosine); \
  417. m[1][2] = (sine); \
  418. m[1][3] = 0.0; \
  419. \
  420. m[2][0] = 0.0; \
  421. m[2][1] = -(sine); \
  422. m[2][2] = (cosine); \
  423. m[2][3] = 0.0; \
  424. \
  425. m[3][0] = 0.0; \
  426. m[3][1] = 0.0; \
  427. m[3][2] = 0.0; \
  428. m[3][3] = 1.0; \
  429. }\
  430. /*! matrix rotation Y */
  431. #define ROTY_CS(m,cosine,sine) \
  432. { \
  433. /* rotation about the y-axis */ \
  434. \
  435. m[0][0] = (cosine); \
  436. m[0][1] = 0.0; \
  437. m[0][2] = -(sine); \
  438. m[0][3] = 0.0; \
  439. \
  440. m[1][0] = 0.0; \
  441. m[1][1] = 1.0; \
  442. m[1][2] = 0.0; \
  443. m[1][3] = 0.0; \
  444. \
  445. m[2][0] = (sine); \
  446. m[2][1] = 0.0; \
  447. m[2][2] = (cosine); \
  448. m[2][3] = 0.0; \
  449. \
  450. m[3][0] = 0.0; \
  451. m[3][1] = 0.0; \
  452. m[3][2] = 0.0; \
  453. m[3][3] = 1.0; \
  454. }\
  455. /*! matrix rotation Z */
  456. #define ROTZ_CS(m,cosine,sine) \
  457. { \
  458. /* rotation about the z-axis */ \
  459. \
  460. m[0][0] = (cosine); \
  461. m[0][1] = (sine); \
  462. m[0][2] = 0.0; \
  463. m[0][3] = 0.0; \
  464. \
  465. m[1][0] = -(sine); \
  466. m[1][1] = (cosine); \
  467. m[1][2] = 0.0; \
  468. m[1][3] = 0.0; \
  469. \
  470. m[2][0] = 0.0; \
  471. m[2][1] = 0.0; \
  472. m[2][2] = 1.0; \
  473. m[2][3] = 0.0; \
  474. \
  475. m[3][0] = 0.0; \
  476. m[3][1] = 0.0; \
  477. m[3][2] = 0.0; \
  478. m[3][3] = 1.0; \
  479. }\
  480. /*! matrix copy */
  481. #define COPY_MATRIX_2X2(b,a) \
  482. { \
  483. b[0][0] = a[0][0]; \
  484. b[0][1] = a[0][1]; \
  485. \
  486. b[1][0] = a[1][0]; \
  487. b[1][1] = a[1][1]; \
  488. \
  489. }\
  490. /*! matrix copy */
  491. #define COPY_MATRIX_2X3(b,a) \
  492. { \
  493. b[0][0] = a[0][0]; \
  494. b[0][1] = a[0][1]; \
  495. b[0][2] = a[0][2]; \
  496. \
  497. b[1][0] = a[1][0]; \
  498. b[1][1] = a[1][1]; \
  499. b[1][2] = a[1][2]; \
  500. }\
  501. /*! matrix copy */
  502. #define COPY_MATRIX_3X3(b,a) \
  503. { \
  504. b[0][0] = a[0][0]; \
  505. b[0][1] = a[0][1]; \
  506. b[0][2] = a[0][2]; \
  507. \
  508. b[1][0] = a[1][0]; \
  509. b[1][1] = a[1][1]; \
  510. b[1][2] = a[1][2]; \
  511. \
  512. b[2][0] = a[2][0]; \
  513. b[2][1] = a[2][1]; \
  514. b[2][2] = a[2][2]; \
  515. }\
  516. /*! matrix copy */
  517. #define COPY_MATRIX_4X4(b,a) \
  518. { \
  519. b[0][0] = a[0][0]; \
  520. b[0][1] = a[0][1]; \
  521. b[0][2] = a[0][2]; \
  522. b[0][3] = a[0][3]; \
  523. \
  524. b[1][0] = a[1][0]; \
  525. b[1][1] = a[1][1]; \
  526. b[1][2] = a[1][2]; \
  527. b[1][3] = a[1][3]; \
  528. \
  529. b[2][0] = a[2][0]; \
  530. b[2][1] = a[2][1]; \
  531. b[2][2] = a[2][2]; \
  532. b[2][3] = a[2][3]; \
  533. \
  534. b[3][0] = a[3][0]; \
  535. b[3][1] = a[3][1]; \
  536. b[3][2] = a[3][2]; \
  537. b[3][3] = a[3][3]; \
  538. }\
  539. /*! matrix transpose */
  540. #define TRANSPOSE_MATRIX_2X2(b,a) \
  541. { \
  542. b[0][0] = a[0][0]; \
  543. b[0][1] = a[1][0]; \
  544. \
  545. b[1][0] = a[0][1]; \
  546. b[1][1] = a[1][1]; \
  547. }\
  548. /*! matrix transpose */
  549. #define TRANSPOSE_MATRIX_3X3(b,a) \
  550. { \
  551. b[0][0] = a[0][0]; \
  552. b[0][1] = a[1][0]; \
  553. b[0][2] = a[2][0]; \
  554. \
  555. b[1][0] = a[0][1]; \
  556. b[1][1] = a[1][1]; \
  557. b[1][2] = a[2][1]; \
  558. \
  559. b[2][0] = a[0][2]; \
  560. b[2][1] = a[1][2]; \
  561. b[2][2] = a[2][2]; \
  562. }\
  563. /*! matrix transpose */
  564. #define TRANSPOSE_MATRIX_4X4(b,a) \
  565. { \
  566. b[0][0] = a[0][0]; \
  567. b[0][1] = a[1][0]; \
  568. b[0][2] = a[2][0]; \
  569. b[0][3] = a[3][0]; \
  570. \
  571. b[1][0] = a[0][1]; \
  572. b[1][1] = a[1][1]; \
  573. b[1][2] = a[2][1]; \
  574. b[1][3] = a[3][1]; \
  575. \
  576. b[2][0] = a[0][2]; \
  577. b[2][1] = a[1][2]; \
  578. b[2][2] = a[2][2]; \
  579. b[2][3] = a[3][2]; \
  580. \
  581. b[3][0] = a[0][3]; \
  582. b[3][1] = a[1][3]; \
  583. b[3][2] = a[2][3]; \
  584. b[3][3] = a[3][3]; \
  585. }\
  586. /*! multiply matrix by scalar */
  587. #define SCALE_MATRIX_2X2(b,s,a) \
  588. { \
  589. b[0][0] = (s) * a[0][0]; \
  590. b[0][1] = (s) * a[0][1]; \
  591. \
  592. b[1][0] = (s) * a[1][0]; \
  593. b[1][1] = (s) * a[1][1]; \
  594. }\
  595. /*! multiply matrix by scalar */
  596. #define SCALE_MATRIX_3X3(b,s,a) \
  597. { \
  598. b[0][0] = (s) * a[0][0]; \
  599. b[0][1] = (s) * a[0][1]; \
  600. b[0][2] = (s) * a[0][2]; \
  601. \
  602. b[1][0] = (s) * a[1][0]; \
  603. b[1][1] = (s) * a[1][1]; \
  604. b[1][2] = (s) * a[1][2]; \
  605. \
  606. b[2][0] = (s) * a[2][0]; \
  607. b[2][1] = (s) * a[2][1]; \
  608. b[2][2] = (s) * a[2][2]; \
  609. }\
  610. /*! multiply matrix by scalar */
  611. #define SCALE_MATRIX_4X4(b,s,a) \
  612. { \
  613. b[0][0] = (s) * a[0][0]; \
  614. b[0][1] = (s) * a[0][1]; \
  615. b[0][2] = (s) * a[0][2]; \
  616. b[0][3] = (s) * a[0][3]; \
  617. \
  618. b[1][0] = (s) * a[1][0]; \
  619. b[1][1] = (s) * a[1][1]; \
  620. b[1][2] = (s) * a[1][2]; \
  621. b[1][3] = (s) * a[1][3]; \
  622. \
  623. b[2][0] = (s) * a[2][0]; \
  624. b[2][1] = (s) * a[2][1]; \
  625. b[2][2] = (s) * a[2][2]; \
  626. b[2][3] = (s) * a[2][3]; \
  627. \
  628. b[3][0] = s * a[3][0]; \
  629. b[3][1] = s * a[3][1]; \
  630. b[3][2] = s * a[3][2]; \
  631. b[3][3] = s * a[3][3]; \
  632. }\
  633. /*! multiply matrix by scalar */
  634. #define SCALE_VEC_MATRIX_2X2(b,svec,a) \
  635. { \
  636. b[0][0] = svec[0] * a[0][0]; \
  637. b[1][0] = svec[0] * a[1][0]; \
  638. \
  639. b[0][1] = svec[1] * a[0][1]; \
  640. b[1][1] = svec[1] * a[1][1]; \
  641. }\
  642. /*! multiply matrix by scalar. Each columns is scaled by each scalar vector component */
  643. #define SCALE_VEC_MATRIX_3X3(b,svec,a) \
  644. { \
  645. b[0][0] = svec[0] * a[0][0]; \
  646. b[1][0] = svec[0] * a[1][0]; \
  647. b[2][0] = svec[0] * a[2][0]; \
  648. \
  649. b[0][1] = svec[1] * a[0][1]; \
  650. b[1][1] = svec[1] * a[1][1]; \
  651. b[2][1] = svec[1] * a[2][1]; \
  652. \
  653. b[0][2] = svec[2] * a[0][2]; \
  654. b[1][2] = svec[2] * a[1][2]; \
  655. b[2][2] = svec[2] * a[2][2]; \
  656. }\
  657. /*! multiply matrix by scalar */
  658. #define SCALE_VEC_MATRIX_4X4(b,svec,a) \
  659. { \
  660. b[0][0] = svec[0] * a[0][0]; \
  661. b[1][0] = svec[0] * a[1][0]; \
  662. b[2][0] = svec[0] * a[2][0]; \
  663. b[3][0] = svec[0] * a[3][0]; \
  664. \
  665. b[0][1] = svec[1] * a[0][1]; \
  666. b[1][1] = svec[1] * a[1][1]; \
  667. b[2][1] = svec[1] * a[2][1]; \
  668. b[3][1] = svec[1] * a[3][1]; \
  669. \
  670. b[0][2] = svec[2] * a[0][2]; \
  671. b[1][2] = svec[2] * a[1][2]; \
  672. b[2][2] = svec[2] * a[2][2]; \
  673. b[3][2] = svec[2] * a[3][2]; \
  674. \
  675. b[0][3] = svec[3] * a[0][3]; \
  676. b[1][3] = svec[3] * a[1][3]; \
  677. b[2][3] = svec[3] * a[2][3]; \
  678. b[3][3] = svec[3] * a[3][3]; \
  679. }\
  680. /*! multiply matrix by scalar */
  681. #define ACCUM_SCALE_MATRIX_2X2(b,s,a) \
  682. { \
  683. b[0][0] += (s) * a[0][0]; \
  684. b[0][1] += (s) * a[0][1]; \
  685. \
  686. b[1][0] += (s) * a[1][0]; \
  687. b[1][1] += (s) * a[1][1]; \
  688. }\
  689. /*! multiply matrix by scalar */
  690. #define ACCUM_SCALE_MATRIX_3X3(b,s,a) \
  691. { \
  692. b[0][0] += (s) * a[0][0]; \
  693. b[0][1] += (s) * a[0][1]; \
  694. b[0][2] += (s) * a[0][2]; \
  695. \
  696. b[1][0] += (s) * a[1][0]; \
  697. b[1][1] += (s) * a[1][1]; \
  698. b[1][2] += (s) * a[1][2]; \
  699. \
  700. b[2][0] += (s) * a[2][0]; \
  701. b[2][1] += (s) * a[2][1]; \
  702. b[2][2] += (s) * a[2][2]; \
  703. }\
  704. /*! multiply matrix by scalar */
  705. #define ACCUM_SCALE_MATRIX_4X4(b,s,a) \
  706. { \
  707. b[0][0] += (s) * a[0][0]; \
  708. b[0][1] += (s) * a[0][1]; \
  709. b[0][2] += (s) * a[0][2]; \
  710. b[0][3] += (s) * a[0][3]; \
  711. \
  712. b[1][0] += (s) * a[1][0]; \
  713. b[1][1] += (s) * a[1][1]; \
  714. b[1][2] += (s) * a[1][2]; \
  715. b[1][3] += (s) * a[1][3]; \
  716. \
  717. b[2][0] += (s) * a[2][0]; \
  718. b[2][1] += (s) * a[2][1]; \
  719. b[2][2] += (s) * a[2][2]; \
  720. b[2][3] += (s) * a[2][3]; \
  721. \
  722. b[3][0] += (s) * a[3][0]; \
  723. b[3][1] += (s) * a[3][1]; \
  724. b[3][2] += (s) * a[3][2]; \
  725. b[3][3] += (s) * a[3][3]; \
  726. }\
  727. /*! matrix product */
  728. /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
  729. #define MATRIX_PRODUCT_2X2(c,a,b) \
  730. { \
  731. c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]; \
  732. c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]; \
  733. \
  734. c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]; \
  735. c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]; \
  736. \
  737. }\
  738. /*! matrix product */
  739. /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
  740. #define MATRIX_PRODUCT_3X3(c,a,b) \
  741. { \
  742. c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; \
  743. c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; \
  744. c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; \
  745. \
  746. c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; \
  747. c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; \
  748. c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; \
  749. \
  750. c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; \
  751. c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; \
  752. c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; \
  753. }\
  754. /*! matrix product */
  755. /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
  756. #define MATRIX_PRODUCT_4X4(c,a,b) \
  757. { \
  758. c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\
  759. c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\
  760. c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\
  761. c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\
  762. \
  763. c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\
  764. c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\
  765. c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\
  766. c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\
  767. \
  768. c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\
  769. c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\
  770. c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\
  771. c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\
  772. \
  773. c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\
  774. c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\
  775. c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\
  776. c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\
  777. }\
  778. /*! matrix times vector */
  779. #define MAT_DOT_VEC_2X2(p,m,v) \
  780. { \
  781. p[0] = m[0][0]*v[0] + m[0][1]*v[1]; \
  782. p[1] = m[1][0]*v[0] + m[1][1]*v[1]; \
  783. }\
  784. /*! matrix times vector */
  785. #define MAT_DOT_VEC_3X3(p,m,v) \
  786. { \
  787. p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; \
  788. p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; \
  789. p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; \
  790. }\
  791. /*! matrix times vector
  792. v is a vec4f
  793. */
  794. #define MAT_DOT_VEC_4X4(p,m,v) \
  795. { \
  796. p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3]; \
  797. p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3]; \
  798. p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3]; \
  799. p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3]; \
  800. }\
  801. /*! matrix times vector
  802. v is a vec3f
  803. and m is a mat4f<br>
  804. Last column is added as the position
  805. */
  806. #define MAT_DOT_VEC_3X4(p,m,v) \
  807. { \
  808. p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]; \
  809. p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]; \
  810. p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]; \
  811. }\
  812. /*! vector transpose times matrix */
  813. /*! p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */
  814. #define VEC_DOT_MAT_3X3(p,v,m) \
  815. { \
  816. p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0]; \
  817. p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1]; \
  818. p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2]; \
  819. }\
  820. /*! affine matrix times vector */
  821. /** The matrix is assumed to be an affine matrix, with last two
  822. * entries representing a translation */
  823. #define MAT_DOT_VEC_2X3(p,m,v) \
  824. { \
  825. p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]; \
  826. p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]; \
  827. }\
  828. //! Transform a plane
  829. #define MAT_TRANSFORM_PLANE_4X4(pout,m,plane)\
  830. { \
  831. pout[0] = m[0][0]*plane[0] + m[0][1]*plane[1] + m[0][2]*plane[2];\
  832. pout[1] = m[1][0]*plane[0] + m[1][1]*plane[1] + m[1][2]*plane[2];\
  833. pout[2] = m[2][0]*plane[0] + m[2][1]*plane[1] + m[2][2]*plane[2];\
  834. pout[3] = m[0][3]*pout[0] + m[1][3]*pout[1] + m[2][3]*pout[2] + plane[3];\
  835. }\
  836. /** inverse transpose of matrix times vector
  837. *
  838. * This macro computes inverse transpose of matrix m,
  839. * and multiplies vector v into it, to yeild vector p
  840. *
  841. * DANGER !!! Do Not use this on normal vectors!!!
  842. * It will leave normals the wrong length !!!
  843. * See macro below for use on normals.
  844. */
  845. #define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v) \
  846. { \
  847. GREAL det; \
  848. \
  849. det = m[0][0]*m[1][1] - m[0][1]*m[1][0]; \
  850. p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
  851. p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
  852. \
  853. /* if matrix not singular, and not orthonormal, then renormalize */ \
  854. if ((det!=1.0f) && (det != 0.0f)) { \
  855. det = 1.0f / det; \
  856. p[0] *= det; \
  857. p[1] *= det; \
  858. } \
  859. }\
  860. /** transform normal vector by inverse transpose of matrix
  861. * and then renormalize the vector
  862. *
  863. * This macro computes inverse transpose of matrix m,
  864. * and multiplies vector v into it, to yeild vector p
  865. * Vector p is then normalized.
  866. */
  867. #define NORM_XFORM_2X2(p,m,v) \
  868. { \
  869. GREAL len; \
  870. \
  871. /* do nothing if off-diagonals are zero and diagonals are \
  872. * equal */ \
  873. if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) { \
  874. p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
  875. p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
  876. \
  877. len = p[0]*p[0] + p[1]*p[1]; \
  878. GIM_INV_SQRT(len,len); \
  879. p[0] *= len; \
  880. p[1] *= len; \
  881. } else { \
  882. VEC_COPY_2 (p, v); \
  883. } \
  884. }\
  885. /** outer product of vector times vector transpose
  886. *
  887. * The outer product of vector v and vector transpose t yeilds
  888. * dyadic matrix m.
  889. */
  890. #define OUTER_PRODUCT_2X2(m,v,t) \
  891. { \
  892. m[0][0] = v[0] * t[0]; \
  893. m[0][1] = v[0] * t[1]; \
  894. \
  895. m[1][0] = v[1] * t[0]; \
  896. m[1][1] = v[1] * t[1]; \
  897. }\
  898. /** outer product of vector times vector transpose
  899. *
  900. * The outer product of vector v and vector transpose t yeilds
  901. * dyadic matrix m.
  902. */
  903. #define OUTER_PRODUCT_3X3(m,v,t) \
  904. { \
  905. m[0][0] = v[0] * t[0]; \
  906. m[0][1] = v[0] * t[1]; \
  907. m[0][2] = v[0] * t[2]; \
  908. \
  909. m[1][0] = v[1] * t[0]; \
  910. m[1][1] = v[1] * t[1]; \
  911. m[1][2] = v[1] * t[2]; \
  912. \
  913. m[2][0] = v[2] * t[0]; \
  914. m[2][1] = v[2] * t[1]; \
  915. m[2][2] = v[2] * t[2]; \
  916. }\
  917. /** outer product of vector times vector transpose
  918. *
  919. * The outer product of vector v and vector transpose t yeilds
  920. * dyadic matrix m.
  921. */
  922. #define OUTER_PRODUCT_4X4(m,v,t) \
  923. { \
  924. m[0][0] = v[0] * t[0]; \
  925. m[0][1] = v[0] * t[1]; \
  926. m[0][2] = v[0] * t[2]; \
  927. m[0][3] = v[0] * t[3]; \
  928. \
  929. m[1][0] = v[1] * t[0]; \
  930. m[1][1] = v[1] * t[1]; \
  931. m[1][2] = v[1] * t[2]; \
  932. m[1][3] = v[1] * t[3]; \
  933. \
  934. m[2][0] = v[2] * t[0]; \
  935. m[2][1] = v[2] * t[1]; \
  936. m[2][2] = v[2] * t[2]; \
  937. m[2][3] = v[2] * t[3]; \
  938. \
  939. m[3][0] = v[3] * t[0]; \
  940. m[3][1] = v[3] * t[1]; \
  941. m[3][2] = v[3] * t[2]; \
  942. m[3][3] = v[3] * t[3]; \
  943. }\
  944. /** outer product of vector times vector transpose
  945. *
  946. * The outer product of vector v and vector transpose t yeilds
  947. * dyadic matrix m.
  948. */
  949. #define ACCUM_OUTER_PRODUCT_2X2(m,v,t) \
  950. { \
  951. m[0][0] += v[0] * t[0]; \
  952. m[0][1] += v[0] * t[1]; \
  953. \
  954. m[1][0] += v[1] * t[0]; \
  955. m[1][1] += v[1] * t[1]; \
  956. }\
  957. /** outer product of vector times vector transpose
  958. *
  959. * The outer product of vector v and vector transpose t yeilds
  960. * dyadic matrix m.
  961. */
  962. #define ACCUM_OUTER_PRODUCT_3X3(m,v,t) \
  963. { \
  964. m[0][0] += v[0] * t[0]; \
  965. m[0][1] += v[0] * t[1]; \
  966. m[0][2] += v[0] * t[2]; \
  967. \
  968. m[1][0] += v[1] * t[0]; \
  969. m[1][1] += v[1] * t[1]; \
  970. m[1][2] += v[1] * t[2]; \
  971. \
  972. m[2][0] += v[2] * t[0]; \
  973. m[2][1] += v[2] * t[1]; \
  974. m[2][2] += v[2] * t[2]; \
  975. }\
  976. /** outer product of vector times vector transpose
  977. *
  978. * The outer product of vector v and vector transpose t yeilds
  979. * dyadic matrix m.
  980. */
  981. #define ACCUM_OUTER_PRODUCT_4X4(m,v,t) \
  982. { \
  983. m[0][0] += v[0] * t[0]; \
  984. m[0][1] += v[0] * t[1]; \
  985. m[0][2] += v[0] * t[2]; \
  986. m[0][3] += v[0] * t[3]; \
  987. \
  988. m[1][0] += v[1] * t[0]; \
  989. m[1][1] += v[1] * t[1]; \
  990. m[1][2] += v[1] * t[2]; \
  991. m[1][3] += v[1] * t[3]; \
  992. \
  993. m[2][0] += v[2] * t[0]; \
  994. m[2][1] += v[2] * t[1]; \
  995. m[2][2] += v[2] * t[2]; \
  996. m[2][3] += v[2] * t[3]; \
  997. \
  998. m[3][0] += v[3] * t[0]; \
  999. m[3][1] += v[3] * t[1]; \
  1000. m[3][2] += v[3] * t[2]; \
  1001. m[3][3] += v[3] * t[3]; \
  1002. }\
  1003. /** determinant of matrix
  1004. *
  1005. * Computes determinant of matrix m, returning d
  1006. */
  1007. #define DETERMINANT_2X2(d,m) \
  1008. { \
  1009. d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
  1010. }\
  1011. /** determinant of matrix
  1012. *
  1013. * Computes determinant of matrix m, returning d
  1014. */
  1015. #define DETERMINANT_3X3(d,m) \
  1016. { \
  1017. d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); \
  1018. d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); \
  1019. d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); \
  1020. }\
  1021. /** i,j,th cofactor of a 4x4 matrix
  1022. *
  1023. */
  1024. #define COFACTOR_4X4_IJ(fac,m,i,j) \
  1025. { \
  1026. GUINT __ii[4], __jj[4], __k; \
  1027. \
  1028. for (__k=0; __k<i; __k++) __ii[__k] = __k; \
  1029. for (__k=i; __k<3; __k++) __ii[__k] = __k+1; \
  1030. for (__k=0; __k<j; __k++) __jj[__k] = __k; \
  1031. for (__k=j; __k<3; __k++) __jj[__k] = __k+1; \
  1032. \
  1033. (fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[2]] \
  1034. - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[1]]); \
  1035. (fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[2]] \
  1036. - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[0]]);\
  1037. (fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[1]] \
  1038. - m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[0]]);\
  1039. \
  1040. __k = i+j; \
  1041. if ( __k != (__k/2)*2) { \
  1042. (fac) = -(fac); \
  1043. } \
  1044. }\
  1045. /** determinant of matrix
  1046. *
  1047. * Computes determinant of matrix m, returning d
  1048. */
  1049. #define DETERMINANT_4X4(d,m) \
  1050. { \
  1051. GREAL cofac; \
  1052. COFACTOR_4X4_IJ (cofac, m, 0, 0); \
  1053. d = m[0][0] * cofac; \
  1054. COFACTOR_4X4_IJ (cofac, m, 0, 1); \
  1055. d += m[0][1] * cofac; \
  1056. COFACTOR_4X4_IJ (cofac, m, 0, 2); \
  1057. d += m[0][2] * cofac; \
  1058. COFACTOR_4X4_IJ (cofac, m, 0, 3); \
  1059. d += m[0][3] * cofac; \
  1060. }\
  1061. /** cofactor of matrix
  1062. *
  1063. * Computes cofactor of matrix m, returning a
  1064. */
  1065. #define COFACTOR_2X2(a,m) \
  1066. { \
  1067. a[0][0] = (m)[1][1]; \
  1068. a[0][1] = - (m)[1][0]; \
  1069. a[1][0] = - (m)[0][1]; \
  1070. a[1][1] = (m)[0][0]; \
  1071. }\
  1072. /** cofactor of matrix
  1073. *
  1074. * Computes cofactor of matrix m, returning a
  1075. */
  1076. #define COFACTOR_3X3(a,m) \
  1077. { \
  1078. a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
  1079. a[0][1] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
  1080. a[0][2] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
  1081. a[1][0] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
  1082. a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
  1083. a[1][2] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
  1084. a[2][0] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
  1085. a[2][1] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
  1086. a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
  1087. }\
  1088. /** cofactor of matrix
  1089. *
  1090. * Computes cofactor of matrix m, returning a
  1091. */
  1092. #define COFACTOR_4X4(a,m) \
  1093. { \
  1094. int i,j; \
  1095. \
  1096. for (i=0; i<4; i++) { \
  1097. for (j=0; j<4; j++) { \
  1098. COFACTOR_4X4_IJ (a[i][j], m, i, j); \
  1099. } \
  1100. } \
  1101. }\
  1102. /** adjoint of matrix
  1103. *
  1104. * Computes adjoint of matrix m, returning a
  1105. * (Note that adjoint is just the transpose of the cofactor matrix)
  1106. */
  1107. #define ADJOINT_2X2(a,m) \
  1108. { \
  1109. a[0][0] = (m)[1][1]; \
  1110. a[1][0] = - (m)[1][0]; \
  1111. a[0][1] = - (m)[0][1]; \
  1112. a[1][1] = (m)[0][0]; \
  1113. }\
  1114. /** adjoint of matrix
  1115. *
  1116. * Computes adjoint of matrix m, returning a
  1117. * (Note that adjoint is just the transpose of the cofactor matrix)
  1118. */
  1119. #define ADJOINT_3X3(a,m) \
  1120. { \
  1121. a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
  1122. a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
  1123. a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
  1124. a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
  1125. a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
  1126. a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
  1127. a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
  1128. a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
  1129. a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
  1130. }\
  1131. /** adjoint of matrix
  1132. *
  1133. * Computes adjoint of matrix m, returning a
  1134. * (Note that adjoint is just the transpose of the cofactor matrix)
  1135. */
  1136. #define ADJOINT_4X4(a,m) \
  1137. { \
  1138. char _i_,_j_; \
  1139. \
  1140. for (_i_=0; _i_<4; _i_++) { \
  1141. for (_j_=0; _j_<4; _j_++) { \
  1142. COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
  1143. } \
  1144. } \
  1145. }\
  1146. /** compute adjoint of matrix and scale
  1147. *
  1148. * Computes adjoint of matrix m, scales it by s, returning a
  1149. */
  1150. #define SCALE_ADJOINT_2X2(a,s,m) \
  1151. { \
  1152. a[0][0] = (s) * m[1][1]; \
  1153. a[1][0] = - (s) * m[1][0]; \
  1154. a[0][1] = - (s) * m[0][1]; \
  1155. a[1][1] = (s) * m[0][0]; \
  1156. }\
  1157. /** compute adjoint of matrix and scale
  1158. *
  1159. * Computes adjoint of matrix m, scales it by s, returning a
  1160. */
  1161. #define SCALE_ADJOINT_3X3(a,s,m) \
  1162. { \
  1163. a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
  1164. a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
  1165. a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
  1166. \
  1167. a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
  1168. a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
  1169. a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
  1170. \
  1171. a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
  1172. a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
  1173. a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
  1174. }\
  1175. /** compute adjoint of matrix and scale
  1176. *
  1177. * Computes adjoint of matrix m, scales it by s, returning a
  1178. */
  1179. #define SCALE_ADJOINT_4X4(a,s,m) \
  1180. { \
  1181. char _i_,_j_; \
  1182. for (_i_=0; _i_<4; _i_++) { \
  1183. for (_j_=0; _j_<4; _j_++) { \
  1184. COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
  1185. a[_j_][_i_] *= s; \
  1186. } \
  1187. } \
  1188. }\
  1189. /** inverse of matrix
  1190. *
  1191. * Compute inverse of matrix a, returning determinant m and
  1192. * inverse b
  1193. */
  1194. #define INVERT_2X2(b,det,a) \
  1195. { \
  1196. GREAL _tmp_; \
  1197. DETERMINANT_2X2 (det, a); \
  1198. _tmp_ = 1.0 / (det); \
  1199. SCALE_ADJOINT_2X2 (b, _tmp_, a); \
  1200. }\
  1201. /** inverse of matrix
  1202. *
  1203. * Compute inverse of matrix a, returning determinant m and
  1204. * inverse b
  1205. */
  1206. #define INVERT_3X3(b,det,a) \
  1207. { \
  1208. GREAL _tmp_; \
  1209. DETERMINANT_3X3 (det, a); \
  1210. _tmp_ = 1.0 / (det); \
  1211. SCALE_ADJOINT_3X3 (b, _tmp_, a); \
  1212. }\
  1213. /** inverse of matrix
  1214. *
  1215. * Compute inverse of matrix a, returning determinant m and
  1216. * inverse b
  1217. */
  1218. #define INVERT_4X4(b,det,a) \
  1219. { \
  1220. GREAL _tmp_; \
  1221. DETERMINANT_4X4 (det, a); \
  1222. _tmp_ = 1.0 / (det); \
  1223. SCALE_ADJOINT_4X4 (b, _tmp_, a); \
  1224. }\
  1225. //! Get the triple(3) row of a transform matrix
  1226. #define MAT_GET_ROW(mat,vec3,rowindex)\
  1227. {\
  1228. vec3[0] = mat[rowindex][0];\
  1229. vec3[1] = mat[rowindex][1];\
  1230. vec3[2] = mat[rowindex][2]; \
  1231. }\
  1232. //! Get the tuple(2) row of a transform matrix
  1233. #define MAT_GET_ROW2(mat,vec2,rowindex)\
  1234. {\
  1235. vec2[0] = mat[rowindex][0];\
  1236. vec2[1] = mat[rowindex][1];\
  1237. }\
  1238. //! Get the quad (4) row of a transform matrix
  1239. #define MAT_GET_ROW4(mat,vec4,rowindex)\
  1240. {\
  1241. vec4[0] = mat[rowindex][0];\
  1242. vec4[1] = mat[rowindex][1];\
  1243. vec4[2] = mat[rowindex][2];\
  1244. vec4[3] = mat[rowindex][3];\
  1245. }\
  1246. //! Get the triple(3) col of a transform matrix
  1247. #define MAT_GET_COL(mat,vec3,colindex)\
  1248. {\
  1249. vec3[0] = mat[0][colindex];\
  1250. vec3[1] = mat[1][colindex];\
  1251. vec3[2] = mat[2][colindex]; \
  1252. }\
  1253. //! Get the tuple(2) col of a transform matrix
  1254. #define MAT_GET_COL2(mat,vec2,colindex)\
  1255. {\
  1256. vec2[0] = mat[0][colindex];\
  1257. vec2[1] = mat[1][colindex];\
  1258. }\
  1259. //! Get the quad (4) col of a transform matrix
  1260. #define MAT_GET_COL4(mat,vec4,colindex)\
  1261. {\
  1262. vec4[0] = mat[0][colindex];\
  1263. vec4[1] = mat[1][colindex];\
  1264. vec4[2] = mat[2][colindex];\
  1265. vec4[3] = mat[3][colindex];\
  1266. }\
  1267. //! Get the triple(3) col of a transform matrix
  1268. #define MAT_GET_X(mat,vec3)\
  1269. {\
  1270. MAT_GET_COL(mat,vec3,0);\
  1271. }\
  1272. //! Get the triple(3) col of a transform matrix
  1273. #define MAT_GET_Y(mat,vec3)\
  1274. {\
  1275. MAT_GET_COL(mat,vec3,1);\
  1276. }\
  1277. //! Get the triple(3) col of a transform matrix
  1278. #define MAT_GET_Z(mat,vec3)\
  1279. {\
  1280. MAT_GET_COL(mat,vec3,2);\
  1281. }\
  1282. //! Get the triple(3) col of a transform matrix
  1283. #define MAT_SET_X(mat,vec3)\
  1284. {\
  1285. mat[0][0] = vec3[0];\
  1286. mat[1][0] = vec3[1];\
  1287. mat[2][0] = vec3[2];\
  1288. }\
  1289. //! Get the triple(3) col of a transform matrix
  1290. #define MAT_SET_Y(mat,vec3)\
  1291. {\
  1292. mat[0][1] = vec3[0];\
  1293. mat[1][1] = vec3[1];\
  1294. mat[2][1] = vec3[2];\
  1295. }\
  1296. //! Get the triple(3) col of a transform matrix
  1297. #define MAT_SET_Z(mat,vec3)\
  1298. {\
  1299. mat[0][2] = vec3[0];\
  1300. mat[1][2] = vec3[1];\
  1301. mat[2][2] = vec3[2];\
  1302. }\
  1303. //! Get the triple(3) col of a transform matrix
  1304. #define MAT_GET_TRANSLATION(mat,vec3)\
  1305. {\
  1306. vec3[0] = mat[0][3];\
  1307. vec3[1] = mat[1][3];\
  1308. vec3[2] = mat[2][3]; \
  1309. }\
  1310. //! Set the triple(3) col of a transform matrix
  1311. #define MAT_SET_TRANSLATION(mat,vec3)\
  1312. {\
  1313. mat[0][3] = vec3[0];\
  1314. mat[1][3] = vec3[1];\
  1315. mat[2][3] = vec3[2]; \
  1316. }\
  1317. //! Returns the dot product between a vec3f and the row of a matrix
  1318. #define MAT_DOT_ROW(mat,vec3,rowindex) (vec3[0]*mat[rowindex][0] + vec3[1]*mat[rowindex][1] + vec3[2]*mat[rowindex][2])
  1319. //! Returns the dot product between a vec2f and the row of a matrix
  1320. #define MAT_DOT_ROW2(mat,vec2,rowindex) (vec2[0]*mat[rowindex][0] + vec2[1]*mat[rowindex][1])
  1321. //! Returns the dot product between a vec4f and the row of a matrix
  1322. #define MAT_DOT_ROW4(mat,vec4,rowindex) (vec4[0]*mat[rowindex][0] + vec4[1]*mat[rowindex][1] + vec4[2]*mat[rowindex][2] + vec4[3]*mat[rowindex][3])
  1323. //! Returns the dot product between a vec3f and the col of a matrix
  1324. #define MAT_DOT_COL(mat,vec3,colindex) (vec3[0]*mat[0][colindex] + vec3[1]*mat[1][colindex] + vec3[2]*mat[2][colindex])
  1325. //! Returns the dot product between a vec2f and the col of a matrix
  1326. #define MAT_DOT_COL2(mat,vec2,colindex) (vec2[0]*mat[0][colindex] + vec2[1]*mat[1][colindex])
  1327. //! Returns the dot product between a vec4f and the col of a matrix
  1328. #define MAT_DOT_COL4(mat,vec4,colindex) (vec4[0]*mat[0][colindex] + vec4[1]*mat[1][colindex] + vec4[2]*mat[2][colindex] + vec4[3]*mat[3][colindex])
  1329. /*!Transpose matrix times vector
  1330. v is a vec3f
  1331. and m is a mat4f<br>
  1332. */
  1333. #define INV_MAT_DOT_VEC_3X3(p,m,v) \
  1334. { \
  1335. p[0] = MAT_DOT_COL(m,v,0); \
  1336. p[1] = MAT_DOT_COL(m,v,1); \
  1337. p[2] = MAT_DOT_COL(m,v,2); \
  1338. }\
  1339. #endif // GIM_VECTOR_H_INCLUDED