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Goal
The goal of this project was to produce multiple methods written in Scheme by which 

one might produce solutions to the "N-Queens problem" for any N, and then to answer certain 
questions, mainly "How does the work grow with problem size?" The methods produced 
were to be a simple backtracking method and also a minimum-conflicts method. Minor 
questions asked include: When backtracking, which column order is most efficient? When 
taking a minimum-conflicts approach, is it more efficient to have a random initial state, or 
one created with a 'greedy' algorithm, selecting the least conflicting value for each new 
column? Does choosing the column with the most conflicts instead of a random column in the 
min-conflicts approach do anything useful?

Methods

Backtracking
The backtracking algorithm goes approximately thus: for each column, if it is not the 

final column, check if a queen can be legitimately placed in the next column, according to 
some fixed column order: either left to right (0 to N), inside out, or outside in. If so, recurse 
down another level using the next column as the current column. If not, see if there is any 
other valid position in this column. If so, try again with the new assignment. If not, fail. If this 
is the final column, check if it is a valid state. If yes, return. If not, fail.

Minimum-conflicts
The minimum-conflicts algorithm chooses a random column with conflicts (there is a 

check against simply choosing the same column over again unless it is the only one left) and 
then selects the row in that column that causes the least conflicts to place the queen. It does 
this until either a valid state is reached or it hits the provided maximum number of 
movements.

General
Many of the helper methods, in particular, are made up of a wrapper function and a 

recursive core function: the 'wrapper' initializes everything and passes it in to the recursive 
function, which is what does all the work.

The functions are generally split into as many sub-functions as possible in an attempt 
to make everything understandable.



Results

How does the work grow with problem size?

Backtracking and min-conflicts grow very differently. Backtracking grows enormously 
quickly, while min-conflicts grows fairly slowly. 

Fig. 1: Comparison of backtracking and minimum-conflicts

The graph suggests that backtracking is exponential in complexity, while min-conflicts is not. 
For further discussion of the relative complexities, see the Discussion section.
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What column order is most efficient for backtracking?
The hypothesis presented was that inside-out would be more efficient than left-to-right, 

which would be more efficient than outside-in. Here is the data:

Fig. 2: Comparison of order of columns for backtracking

It is impossible to draw any conclusions about the inside-out order, because it inevitably 
decided that each problem had no solution, although it did take less time to fail than the other 
methods took to succeed. Surprisingly, and contrary to the hypothesis, the outside-in column 
order was overall as efficient or more efficient than the left-to-right column order. It is not 
clear why this should be so.

Does the initial state for min-conflicts matter?
The initial state for the minimum-conflicts approach may or may not make a 

difference. Two methods were tested: 'greedy' initialization, where each new column was 
selected to create  the fewest conflicts, and completely random initialization.

Fig. 3: Comparison of the averages (out of 6 or 4 results) for each N
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Fig. 4: Comparison of the medians (out of 6 or 4 results) for each N

Fig. 5: Comparisons of the minimum and maximum results for each N
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ig. 6: Comparison of the average vs the median for greedy initialization

Fig. 7: Comparison of the average vs the median for random initialization

While the differences as compared to backtracking are very small, as can be seen in Fig. 1, 
overall the main difference seems to be that greedy initialization is more consistent, while 
random initialization is potentially much faster or much slower, which seems logical.
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Does choosing the column with the most conflicts help at all in min-conflicts?
No. The random-column-selection was tested on the initial state #(0 1 2 3) with 50 

steps as the max and gave the results (fail, fail, 8, 42, 19, 19, fail). If selecting the column 
with the most conflicts were helpful, one would expect it to take, on average, fewer than 50 
steps. However, the results gotten were four successive failures, and the state logs indicated 
that it kept trying to change the same column and got nowhere. This would seem to indicate 
that such a device is unhelpful at best and impossible to work with at worst.

Discussion
The backtracking algorithm is obviously flawed, because the inside to outside column 

order fails on every attempt and the backtracking algorithm is unable to find a solution for N 
= 6 using any column order. Most probably, it is needlessly convoluted and needs to be 
rewritten, for which there is unfortunately no time. It is much improved from its original 
form, in which N = 4 took 91 steps, most intermediate states were repeated, and it failed more 
often – the problem there was not checking for the validity of a new placement before 
recursing further.

The question was raised of whether or not Russell & Norvig's claim that the runtime 
for min-conflicts is roughly independent of N, and that it can solve the 1,000,000-queens 
problem in 50 steps. The latter claim seems possible, given the element of randomness, but 
unlikely.

Complexity of backtracking and min-conflicts
In the worst case scenario, the backtracking algorithm will place n! * n queens. This 

suggests that it is O(2n), which is to say, of exponential complexity. This is certainly borne out 
by the data presented in Fig. 1.

The worst-case for min-conflicts is somewhat more difficult to work out, because the 
column into which it places a queen is selected randomly. The data suggest that it is O(n2). 
The following chart lists the maximum result divided by n2, for reference purposes.

n Greedy (max/n2) Random (max/n2) n Greedy (max/n2) Random (max/n2)

4 1.13 1.56 15 3.83 2.4

5 0.64 2 16 3.14 1.52

6 15.92 7.75 17 3.03 5.93

7 3.73 0.82 18 6.12 3.27

8 2.58 4.44 19 3.83 0.91

9 3.17 2.57 20 7.18 7.09

10 8.93 4.08 21 4.15 11.19

11 5.22 4.94 22 9.28 2.62

12 3.4 1.25 23 5.98 5.55

13 4.8 3.23 24 6.31 2.23

14 4.12 3.67 25 8.68 14.13
Fig. 7: Comparing max results to n^2



The only n for which the maximum result from min-conflicts was n3 or greater was n = 6, 
which is an outlier in all data sets for difficulty. In the worst-case scenario, then, min-conflicts 
is polynomial, but in most cases it is quadratic.

Appendices

Some solutions

4 Queens 7 Queens

 . . Q .  . Q . . . . .
 Q . . .  . . . . Q . .
 . . . Q  . . Q . . . .
 . Q . .  Q . . . . . .

 . . . . . . Q
 . . . Q . . .

5 Queens  . . . . . Q .

 . . . Q .
 Q . . . . 8 Queens
 . . Q . .
 . . . . Q  . . Q . . . . .
 . Q . . .  Q . . . . . . .

 . . . . . . Q .
 . . . . Q . . .

6 Queens  . . . . . . Q .
 . Q . . . . . .

 . . . Q . .  . . . Q . . . .
 Q . . . . .  . . . . . Q . .
 . . . . Q .
 . Q . . . .
 . . . . . Q
 . . Q . . .


