gsl_specfunc__fermi_dirac.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634
  1. /* specfunc/fermi_dirac.c
  2. *
  3. * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. /* Author: G. Jungman */
  20. #include "gsl__config.h"
  21. #include "gsl_math.h"
  22. #include "gsl_errno.h"
  23. #include "gsl_sf_exp.h"
  24. #include "gsl_sf_gamma.h"
  25. #include "gsl_sf_hyperg.h"
  26. #include "gsl_sf_pow_int.h"
  27. #include "gsl_sf_zeta.h"
  28. #include "gsl_sf_fermi_dirac.h"
  29. #include "gsl_specfunc__error.h"
  30. #include "gsl_specfunc__chebyshev.h"
  31. #include "gsl_specfunc__cheb_eval.c"
  32. #define locEPS (1000.0*GSL_DBL_EPSILON)
  33. /* Chebyshev fit for F_{1}(t); -1 < t < 1, -1 < x < 1
  34. */
  35. static double fd_1_a_data[22] = {
  36. 1.8949340668482264365,
  37. 0.7237719066890052793,
  38. 0.1250000000000000000,
  39. 0.0101065196435973942,
  40. 0.0,
  41. -0.0000600615242174119,
  42. 0.0,
  43. 6.816528764623e-7,
  44. 0.0,
  45. -9.5895779195e-9,
  46. 0.0,
  47. 1.515104135e-10,
  48. 0.0,
  49. -2.5785616e-12,
  50. 0.0,
  51. 4.62270e-14,
  52. 0.0,
  53. -8.612e-16,
  54. 0.0,
  55. 1.65e-17,
  56. 0.0,
  57. -3.e-19
  58. };
  59. static cheb_series fd_1_a_cs = {
  60. fd_1_a_data,
  61. 21,
  62. -1, 1,
  63. 12
  64. };
  65. /* Chebyshev fit for F_{1}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
  66. */
  67. static double fd_1_b_data[22] = {
  68. 10.409136795234611872,
  69. 3.899445098225161947,
  70. 0.513510935510521222,
  71. 0.010618736770218426,
  72. -0.001584468020659694,
  73. 0.000146139297161640,
  74. -1.408095734499e-6,
  75. -2.177993899484e-6,
  76. 3.91423660640e-7,
  77. -2.3860262660e-8,
  78. -4.138309573e-9,
  79. 1.283965236e-9,
  80. -1.39695990e-10,
  81. -4.907743e-12,
  82. 4.399878e-12,
  83. -7.17291e-13,
  84. 2.4320e-14,
  85. 1.4230e-14,
  86. -3.446e-15,
  87. 2.93e-16,
  88. 3.7e-17,
  89. -1.6e-17
  90. };
  91. static cheb_series fd_1_b_cs = {
  92. fd_1_b_data,
  93. 21,
  94. -1, 1,
  95. 11
  96. };
  97. /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
  98. */
  99. static double fd_1_c_data[23] = {
  100. 56.78099449124299762,
  101. 21.00718468237668011,
  102. 2.24592457063193457,
  103. 0.00173793640425994,
  104. -0.00058716468739423,
  105. 0.00016306958492437,
  106. -0.00003817425583020,
  107. 7.64527252009e-6,
  108. -1.31348500162e-6,
  109. 1.9000646056e-7,
  110. -2.141328223e-8,
  111. 1.23906372e-9,
  112. 2.1848049e-10,
  113. -1.0134282e-10,
  114. 2.484728e-11,
  115. -4.73067e-12,
  116. 7.3555e-13,
  117. -8.740e-14,
  118. 4.85e-15,
  119. 1.23e-15,
  120. -5.6e-16,
  121. 1.4e-16,
  122. -3.e-17
  123. };
  124. static cheb_series fd_1_c_cs = {
  125. fd_1_c_data,
  126. 22,
  127. -1, 1,
  128. 13
  129. };
  130. /* Chebyshev fit for F_{1}(x) / x^2
  131. * 10 < x < 30
  132. * -1 < t < 1
  133. * t = 1/10 (x-10) - 1 = x/10 - 2
  134. * x = 10(t+2)
  135. */
  136. static double fd_1_d_data[30] = {
  137. 1.0126626021151374442,
  138. -0.0063312525536433793,
  139. 0.0024837319237084326,
  140. -0.0008764333697726109,
  141. 0.0002913344438921266,
  142. -0.0000931877907705692,
  143. 0.0000290151342040275,
  144. -8.8548707259955e-6,
  145. 2.6603474114517e-6,
  146. -7.891415690452e-7,
  147. 2.315730237195e-7,
  148. -6.73179452963e-8,
  149. 1.94048035606e-8,
  150. -5.5507129189e-9,
  151. 1.5766090896e-9,
  152. -4.449310875e-10,
  153. 1.248292745e-10,
  154. -3.48392894e-11,
  155. 9.6791550e-12,
  156. -2.6786240e-12,
  157. 7.388852e-13,
  158. -2.032828e-13,
  159. 5.58115e-14,
  160. -1.52987e-14,
  161. 4.1886e-15,
  162. -1.1458e-15,
  163. 3.132e-16,
  164. -8.56e-17,
  165. 2.33e-17,
  166. -5.9e-18
  167. };
  168. static cheb_series fd_1_d_cs = {
  169. fd_1_d_data,
  170. 29,
  171. -1, 1,
  172. 14
  173. };
  174. /* Chebyshev fit for F_{1}(x) / x^2
  175. * 30 < x < Inf
  176. * -1 < t < 1
  177. * t = 60/x - 1
  178. * x = 60/(t+1)
  179. */
  180. static double fd_1_e_data[10] = {
  181. 1.0013707783890401683,
  182. 0.0009138522593601060,
  183. 0.0002284630648400133,
  184. -1.57e-17,
  185. -1.27e-17,
  186. -9.7e-18,
  187. -6.9e-18,
  188. -4.6e-18,
  189. -2.9e-18,
  190. -1.7e-18
  191. };
  192. static cheb_series fd_1_e_cs = {
  193. fd_1_e_data,
  194. 9,
  195. -1, 1,
  196. 4
  197. };
  198. /* Chebyshev fit for F_{2}(t); -1 < t < 1, -1 < x < 1
  199. */
  200. static double fd_2_a_data[21] = {
  201. 2.1573661917148458336,
  202. 0.8849670334241132182,
  203. 0.1784163467613519713,
  204. 0.0208333333333333333,
  205. 0.0012708226459768508,
  206. 0.0,
  207. -5.0619314244895e-6,
  208. 0.0,
  209. 4.32026533989e-8,
  210. 0.0,
  211. -4.870544166e-10,
  212. 0.0,
  213. 6.4203740e-12,
  214. 0.0,
  215. -9.37424e-14,
  216. 0.0,
  217. 1.4715e-15,
  218. 0.0,
  219. -2.44e-17,
  220. 0.0,
  221. 4.e-19
  222. };
  223. static cheb_series fd_2_a_cs = {
  224. fd_2_a_data,
  225. 20,
  226. -1, 1,
  227. 12
  228. };
  229. /* Chebyshev fit for F_{2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
  230. */
  231. static double fd_2_b_data[22] = {
  232. 16.508258811798623599,
  233. 7.421719394793067988,
  234. 1.458309885545603821,
  235. 0.128773850882795229,
  236. 0.001963612026198147,
  237. -0.000237458988738779,
  238. 0.000018539661382641,
  239. -1.92805649479e-7,
  240. -2.01950028452e-7,
  241. 3.2963497518e-8,
  242. -1.885817092e-9,
  243. -2.72632744e-10,
  244. 8.0554561e-11,
  245. -8.313223e-12,
  246. -2.24489e-13,
  247. 2.18778e-13,
  248. -3.4290e-14,
  249. 1.225e-15,
  250. 5.81e-16,
  251. -1.37e-16,
  252. 1.2e-17,
  253. 1.e-18
  254. };
  255. static cheb_series fd_2_b_cs = {
  256. fd_2_b_data,
  257. 21,
  258. -1, 1,
  259. 12
  260. };
  261. /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
  262. */
  263. static double fd_2_c_data[20] = {
  264. 168.87129776686440711,
  265. 81.80260488091659458,
  266. 15.75408505947931513,
  267. 1.12325586765966440,
  268. 0.00059057505725084,
  269. -0.00016469712946921,
  270. 0.00003885607810107,
  271. -7.89873660613e-6,
  272. 1.39786238616e-6,
  273. -2.1534528656e-7,
  274. 2.831510953e-8,
  275. -2.94978583e-9,
  276. 1.6755082e-10,
  277. 2.234229e-11,
  278. -1.035130e-11,
  279. 2.41117e-12,
  280. -4.3531e-13,
  281. 6.447e-14,
  282. -7.39e-15,
  283. 4.3e-16
  284. };
  285. static cheb_series fd_2_c_cs = {
  286. fd_2_c_data,
  287. 19,
  288. -1, 1,
  289. 12
  290. };
  291. /* Chebyshev fit for F_{1}(x) / x^3
  292. * 10 < x < 30
  293. * -1 < t < 1
  294. * t = 1/10 (x-10) - 1 = x/10 - 2
  295. * x = 10(t+2)
  296. */
  297. static double fd_2_d_data[30] = {
  298. 0.3459960518965277589,
  299. -0.00633136397691958024,
  300. 0.00248382959047594408,
  301. -0.00087651191884005114,
  302. 0.00029139255351719932,
  303. -0.00009322746111846199,
  304. 0.00002904021914564786,
  305. -8.86962264810663e-6,
  306. 2.66844972574613e-6,
  307. -7.9331564996004e-7,
  308. 2.3359868615516e-7,
  309. -6.824790880436e-8,
  310. 1.981036528154e-8,
  311. -5.71940426300e-9,
  312. 1.64379426579e-9,
  313. -4.7064937566e-10,
  314. 1.3432614122e-10,
  315. -3.823400534e-11,
  316. 1.085771994e-11,
  317. -3.07727465e-12,
  318. 8.7064848e-13,
  319. -2.4595431e-13,
  320. 6.938531e-14,
  321. -1.954939e-14,
  322. 5.50162e-15,
  323. -1.54657e-15,
  324. 4.3429e-16,
  325. -1.2178e-16,
  326. 3.394e-17,
  327. -8.81e-18
  328. };
  329. static cheb_series fd_2_d_cs = {
  330. fd_2_d_data,
  331. 29,
  332. -1, 1,
  333. 14
  334. };
  335. /* Chebyshev fit for F_{2}(x) / x^3
  336. * 30 < x < Inf
  337. * -1 < t < 1
  338. * t = 60/x - 1
  339. * x = 60/(t+1)
  340. */
  341. static double fd_2_e_data[4] = {
  342. 0.3347041117223735227,
  343. 0.00091385225936012645,
  344. 0.00022846306484003205,
  345. 5.2e-19
  346. };
  347. static cheb_series fd_2_e_cs = {
  348. fd_2_e_data,
  349. 3,
  350. -1, 1,
  351. 3
  352. };
  353. /* Chebyshev fit for F_{-1/2}(t); -1 < t < 1, -1 < x < 1
  354. */
  355. static double fd_mhalf_a_data[20] = {
  356. 1.2663290042859741974,
  357. 0.3697876251911153071,
  358. 0.0278131011214405055,
  359. -0.0033332848565672007,
  360. -0.0004438108265412038,
  361. 0.0000616495177243839,
  362. 8.7589611449897e-6,
  363. -1.2622936986172e-6,
  364. -1.837464037221e-7,
  365. 2.69495091400e-8,
  366. 3.9760866257e-9,
  367. -5.894468795e-10,
  368. -8.77321638e-11,
  369. 1.31016571e-11,
  370. 1.9621619e-12,
  371. -2.945887e-13,
  372. -4.43234e-14,
  373. 6.6816e-15,
  374. 1.0084e-15,
  375. -1.561e-16
  376. };
  377. static cheb_series fd_mhalf_a_cs = {
  378. fd_mhalf_a_data,
  379. 19,
  380. -1, 1,
  381. 12
  382. };
  383. /* Chebyshev fit for F_{-1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
  384. */
  385. static double fd_mhalf_b_data[20] = {
  386. 3.270796131942071484,
  387. 0.5809004935853417887,
  388. -0.0299313438794694987,
  389. -0.0013287935412612198,
  390. 0.0009910221228704198,
  391. -0.0001690954939688554,
  392. 6.5955849946915e-6,
  393. 3.5953966033618e-6,
  394. -9.430672023181e-7,
  395. 8.75773958291e-8,
  396. 1.06247652607e-8,
  397. -4.9587006215e-9,
  398. 7.160432795e-10,
  399. 4.5072219e-12,
  400. -2.3695425e-11,
  401. 4.9122208e-12,
  402. -2.905277e-13,
  403. -9.59291e-14,
  404. 3.00028e-14,
  405. -3.4970e-15
  406. };
  407. static cheb_series fd_mhalf_b_cs = {
  408. fd_mhalf_b_data,
  409. 19,
  410. -1, 1,
  411. 12
  412. };
  413. /* Chebyshev fit for F_{-1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
  414. */
  415. static double fd_mhalf_c_data[25] = {
  416. 5.828283273430595507,
  417. 0.677521118293264655,
  418. -0.043946248736481554,
  419. 0.005825595781828244,
  420. -0.000864858907380668,
  421. 0.000110017890076539,
  422. -6.973305225404e-6,
  423. -1.716267414672e-6,
  424. 8.59811582041e-7,
  425. -2.33066786976e-7,
  426. 4.8503191159e-8,
  427. -8.130620247e-9,
  428. 1.021068250e-9,
  429. -5.3188423e-11,
  430. -1.9430559e-11,
  431. 8.750506e-12,
  432. -2.324897e-12,
  433. 4.83102e-13,
  434. -8.1207e-14,
  435. 1.0132e-14,
  436. -4.64e-16,
  437. -2.24e-16,
  438. 9.7e-17,
  439. -2.6e-17,
  440. 5.e-18
  441. };
  442. static cheb_series fd_mhalf_c_cs = {
  443. fd_mhalf_c_data,
  444. 24,
  445. -1, 1,
  446. 13
  447. };
  448. /* Chebyshev fit for F_{-1/2}(x) / x^(1/2)
  449. * 10 < x < 30
  450. * -1 < t < 1
  451. * t = 1/10 (x-10) - 1 = x/10 - 2
  452. */
  453. static double fd_mhalf_d_data[30] = {
  454. 2.2530744202862438709,
  455. 0.0018745152720114692,
  456. -0.0007550198497498903,
  457. 0.0002759818676644382,
  458. -0.0000959406283465913,
  459. 0.0000324056855537065,
  460. -0.0000107462396145761,
  461. 3.5126865219224e-6,
  462. -1.1313072730092e-6,
  463. 3.577454162766e-7,
  464. -1.104926666238e-7,
  465. 3.31304165692e-8,
  466. -9.5837381008e-9,
  467. 2.6575790141e-9,
  468. -7.015201447e-10,
  469. 1.747111336e-10,
  470. -4.04909605e-11,
  471. 8.5104999e-12,
  472. -1.5261885e-12,
  473. 1.876851e-13,
  474. 1.00574e-14,
  475. -1.82002e-14,
  476. 8.6634e-15,
  477. -3.2058e-15,
  478. 1.0572e-15,
  479. -3.259e-16,
  480. 9.60e-17,
  481. -2.74e-17,
  482. 7.6e-18,
  483. -1.9e-18
  484. };
  485. static cheb_series fd_mhalf_d_cs = {
  486. fd_mhalf_d_data,
  487. 29,
  488. -1, 1,
  489. 15
  490. };
  491. /* Chebyshev fit for F_{1/2}(t); -1 < t < 1, -1 < x < 1
  492. */
  493. static double fd_half_a_data[23] = {
  494. 1.7177138871306189157,
  495. 0.6192579515822668460,
  496. 0.0932802275119206269,
  497. 0.0047094853246636182,
  498. -0.0004243667967864481,
  499. -0.0000452569787686193,
  500. 5.2426509519168e-6,
  501. 6.387648249080e-7,
  502. -8.05777004848e-8,
  503. -1.04290272415e-8,
  504. 1.3769478010e-9,
  505. 1.847190359e-10,
  506. -2.51061890e-11,
  507. -3.4497818e-12,
  508. 4.784373e-13,
  509. 6.68828e-14,
  510. -9.4147e-15,
  511. -1.3333e-15,
  512. 1.898e-16,
  513. 2.72e-17,
  514. -3.9e-18,
  515. -6.e-19,
  516. 1.e-19
  517. };
  518. static cheb_series fd_half_a_cs = {
  519. fd_half_a_data,
  520. 22,
  521. -1, 1,
  522. 11
  523. };
  524. /* Chebyshev fit for F_{1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
  525. */
  526. static double fd_half_b_data[20] = {
  527. 7.651013792074984027,
  528. 2.475545606866155737,
  529. 0.218335982672476128,
  530. -0.007730591500584980,
  531. -0.000217443383867318,
  532. 0.000147663980681359,
  533. -0.000021586361321527,
  534. 8.07712735394e-7,
  535. 3.28858050706e-7,
  536. -7.9474330632e-8,
  537. 6.940207234e-9,
  538. 6.75594681e-10,
  539. -3.10200490e-10,
  540. 4.2677233e-11,
  541. -2.1696e-14,
  542. -1.170245e-12,
  543. 2.34757e-13,
  544. -1.4139e-14,
  545. -3.864e-15,
  546. 1.202e-15
  547. };
  548. static cheb_series fd_half_b_cs = {
  549. fd_half_b_data,
  550. 19,
  551. -1, 1,
  552. 12
  553. };
  554. /* Chebyshev fit for F_{1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
  555. */
  556. static double fd_half_c_data[23] = {
  557. 29.584339348839816528,
  558. 8.808344283250615592,
  559. 0.503771641883577308,
  560. -0.021540694914550443,
  561. 0.002143341709406890,
  562. -0.000257365680646579,
  563. 0.000027933539372803,
  564. -1.678525030167e-6,
  565. -2.78100117693e-7,
  566. 1.35218065147e-7,
  567. -3.3740425009e-8,
  568. 6.474834942e-9,
  569. -1.009678978e-9,
  570. 1.20057555e-10,
  571. -6.636314e-12,
  572. -1.710566e-12,
  573. 7.75069e-13,
  574. -1.97973e-13,
  575. 3.9414e-14,
  576. -6.374e-15,
  577. 7.77e-16,
  578. -4.0e-17,
  579. -1.4e-17
  580. };
  581. static cheb_series fd_half_c_cs = {
  582. fd_half_c_data,
  583. 22,
  584. -1, 1,
  585. 13
  586. };
  587. /* Chebyshev fit for F_{1/2}(x) / x^(3/2)
  588. * 10 < x < 30
  589. * -1 < t < 1
  590. * t = 1/10 (x-10) - 1 = x/10 - 2
  591. */
  592. static double fd_half_d_data[30] = {
  593. 1.5116909434145508537,
  594. -0.0036043405371630468,
  595. 0.0014207743256393359,
  596. -0.0005045399052400260,
  597. 0.0001690758006957347,
  598. -0.0000546305872688307,
  599. 0.0000172223228484571,
  600. -5.3352603788706e-6,
  601. 1.6315287543662e-6,
  602. -4.939021084898e-7,
  603. 1.482515450316e-7,
  604. -4.41552276226e-8,
  605. 1.30503160961e-8,
  606. -3.8262599802e-9,
  607. 1.1123226976e-9,
  608. -3.204765534e-10,
  609. 9.14870489e-11,
  610. -2.58778946e-11,
  611. 7.2550731e-12,
  612. -2.0172226e-12,
  613. 5.566891e-13,
  614. -1.526247e-13,
  615. 4.16121e-14,
  616. -1.12933e-14,
  617. 3.0537e-15,
  618. -8.234e-16,
  619. 2.215e-16,
  620. -5.95e-17,
  621. 1.59e-17,
  622. -4.0e-18
  623. };
  624. static cheb_series fd_half_d_cs = {
  625. fd_half_d_data,
  626. 29,
  627. -1, 1,
  628. 15
  629. };
  630. /* Chebyshev fit for F_{3/2}(t); -1 < t < 1, -1 < x < 1
  631. */
  632. static double fd_3half_a_data[20] = {
  633. 2.0404775940601704976,
  634. 0.8122168298093491444,
  635. 0.1536371165644008069,
  636. 0.0156174323847845125,
  637. 0.0005943427879290297,
  638. -0.0000429609447738365,
  639. -3.8246452994606e-6,
  640. 3.802306180287e-7,
  641. 4.05746157593e-8,
  642. -4.5530360159e-9,
  643. -5.306873139e-10,
  644. 6.37297268e-11,
  645. 7.8403674e-12,
  646. -9.840241e-13,
  647. -1.255952e-13,
  648. 1.62617e-14,
  649. 2.1318e-15,
  650. -2.825e-16,
  651. -3.78e-17,
  652. 5.1e-18
  653. };
  654. static cheb_series fd_3half_a_cs = {
  655. fd_3half_a_data,
  656. 19,
  657. -1, 1,
  658. 11
  659. };
  660. /* Chebyshev fit for F_{3/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
  661. */
  662. static double fd_3half_b_data[22] = {
  663. 13.403206654624176674,
  664. 5.574508357051880924,
  665. 0.931228574387527769,
  666. 0.054638356514085862,
  667. -0.001477172902737439,
  668. -0.000029378553381869,
  669. 0.000018357033493246,
  670. -2.348059218454e-6,
  671. 8.3173787440e-8,
  672. 2.6826486956e-8,
  673. -6.011244398e-9,
  674. 4.94345981e-10,
  675. 3.9557340e-11,
  676. -1.7894930e-11,
  677. 2.348972e-12,
  678. -1.2823e-14,
  679. -5.4192e-14,
  680. 1.0527e-14,
  681. -6.39e-16,
  682. -1.47e-16,
  683. 4.5e-17,
  684. -5.e-18
  685. };
  686. static cheb_series fd_3half_b_cs = {
  687. fd_3half_b_data,
  688. 21,
  689. -1, 1,
  690. 12
  691. };
  692. /* Chebyshev fit for F_{3/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
  693. */
  694. static double fd_3half_c_data[21] = {
  695. 101.03685253378877642,
  696. 43.62085156043435883,
  697. 6.62241373362387453,
  698. 0.25081415008708521,
  699. -0.00798124846271395,
  700. 0.00063462245101023,
  701. -0.00006392178890410,
  702. 6.04535131939e-6,
  703. -3.4007683037e-7,
  704. -4.072661545e-8,
  705. 1.931148453e-8,
  706. -4.46328355e-9,
  707. 7.9434717e-10,
  708. -1.1573569e-10,
  709. 1.304658e-11,
  710. -7.4114e-13,
  711. -1.4181e-13,
  712. 6.491e-14,
  713. -1.597e-14,
  714. 3.05e-15,
  715. -4.8e-16
  716. };
  717. static cheb_series fd_3half_c_cs = {
  718. fd_3half_c_data,
  719. 20,
  720. -1, 1,
  721. 12
  722. };
  723. /* Chebyshev fit for F_{3/2}(x) / x^(5/2)
  724. * 10 < x < 30
  725. * -1 < t < 1
  726. * t = 1/10 (x-10) - 1 = x/10 - 2
  727. */
  728. static double fd_3half_d_data[25] = {
  729. 0.6160645215171852381,
  730. -0.0071239478492671463,
  731. 0.0027906866139659846,
  732. -0.0009829521424317718,
  733. 0.0003260229808519545,
  734. -0.0001040160912910890,
  735. 0.0000322931223232439,
  736. -9.8243506588102e-6,
  737. 2.9420132351277e-6,
  738. -8.699154670418e-7,
  739. 2.545460071999e-7,
  740. -7.38305056331e-8,
  741. 2.12545670310e-8,
  742. -6.0796532462e-9,
  743. 1.7294556741e-9,
  744. -4.896540687e-10,
  745. 1.380786037e-10,
  746. -3.88057305e-11,
  747. 1.08753212e-11,
  748. -3.0407308e-12,
  749. 8.485626e-13,
  750. -2.364275e-13,
  751. 6.57636e-14,
  752. -1.81807e-14,
  753. 4.6884e-15
  754. };
  755. static cheb_series fd_3half_d_cs = {
  756. fd_3half_d_data,
  757. 24,
  758. -1, 1,
  759. 16
  760. };
  761. /* Goano's modification of the Levin-u implementation.
  762. * This is a simplification of the original WHIZ algorithm.
  763. * See [Fessler et al., ACM Toms 9, 346 (1983)].
  764. */
  765. static
  766. int
  767. fd_whiz(const double term, const int iterm,
  768. double * qnum, double * qden,
  769. double * result, double * s)
  770. {
  771. if(iterm == 0) *s = 0.0;
  772. *s += term;
  773. qden[iterm] = 1.0/(term*(iterm+1.0)*(iterm+1.0));
  774. qnum[iterm] = *s * qden[iterm];
  775. if(iterm > 0) {
  776. double factor = 1.0;
  777. double ratio = iterm/(iterm+1.0);
  778. int j;
  779. for(j=iterm-1; j>=0; j--) {
  780. double c = factor * (j+1.0) / (iterm+1.0);
  781. factor *= ratio;
  782. qden[j] = qden[j+1] - c * qden[j];
  783. qnum[j] = qnum[j+1] - c * qnum[j];
  784. }
  785. }
  786. *result = qnum[0] / qden[0];
  787. return GSL_SUCCESS;
  788. }
  789. /* Handle case of integer j <= -2.
  790. */
  791. static
  792. int
  793. fd_nint(const int j, const double x, gsl_sf_result * result)
  794. {
  795. /* const int nsize = 100 + 1; */
  796. enum {
  797. nsize = 100+1
  798. };
  799. double qcoeff[nsize];
  800. if(j >= -1) {
  801. result->val = 0.0;
  802. result->err = 0.0;
  803. GSL_ERROR ("error", GSL_ESANITY);
  804. }
  805. else if(j < -(nsize)) {
  806. result->val = 0.0;
  807. result->err = 0.0;
  808. GSL_ERROR ("error", GSL_EUNIMPL);
  809. }
  810. else {
  811. double a, p, f;
  812. int i, k;
  813. int n = -(j+1);
  814. qcoeff[1] = 1.0;
  815. for(k=2; k<=n; k++) {
  816. qcoeff[k] = -qcoeff[k-1];
  817. for(i=k-1; i>=2; i--) {
  818. qcoeff[i] = i*qcoeff[i] - (k-(i-1))*qcoeff[i-1];
  819. }
  820. }
  821. if(x >= 0.0) {
  822. a = exp(-x);
  823. f = qcoeff[1];
  824. for(i=2; i<=n; i++) {
  825. f = f*a + qcoeff[i];
  826. }
  827. }
  828. else {
  829. a = exp(x);
  830. f = qcoeff[n];
  831. for(i=n-1; i>=1; i--) {
  832. f = f*a + qcoeff[i];
  833. }
  834. }
  835. p = gsl_sf_pow_int(1.0+a, j);
  836. result->val = f*a*p;
  837. result->err = 3.0 * GSL_DBL_EPSILON * fabs(f*a*p);
  838. return GSL_SUCCESS;
  839. }
  840. }
  841. /* x < 0
  842. */
  843. static
  844. int
  845. fd_neg(const double j, const double x, gsl_sf_result * result)
  846. {
  847. enum {
  848. itmax = 100,
  849. qsize = 100+1
  850. };
  851. /* const int itmax = 100; */
  852. /* const int qsize = 100 + 1; */
  853. double qnum[qsize], qden[qsize];
  854. if(x < GSL_LOG_DBL_MIN) {
  855. result->val = 0.0;
  856. result->err = 0.0;
  857. return GSL_SUCCESS;
  858. }
  859. else if(x < -1.0 && x < -fabs(j+1.0)) {
  860. /* Simple series implementation. Avoid the
  861. * complexity and extra work of the series
  862. * acceleration method below.
  863. */
  864. double ex = exp(x);
  865. double term = ex;
  866. double sum = term;
  867. int n;
  868. for(n=2; n<100; n++) {
  869. double rat = (n-1.0)/n;
  870. double p = pow(rat, j+1.0);
  871. term *= -ex * p;
  872. sum += term;
  873. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  874. }
  875. result->val = sum;
  876. result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
  877. return GSL_SUCCESS;
  878. }
  879. else {
  880. double s = 0.0;
  881. double xn = x;
  882. double ex = -exp(x);
  883. double enx = -ex;
  884. double f = 0.0;
  885. double f_previous;
  886. int jterm;
  887. for(jterm=0; jterm<=itmax; jterm++) {
  888. double p = pow(jterm+1.0, j+1.0);
  889. double term = enx/p;
  890. f_previous = f;
  891. fd_whiz(term, jterm, qnum, qden, &f, &s);
  892. xn += x;
  893. if(fabs(f-f_previous) < fabs(f)*2.0*GSL_DBL_EPSILON || xn < GSL_LOG_DBL_MIN) break;
  894. enx *= ex;
  895. }
  896. result->val = f;
  897. result->err = fabs(f-f_previous);
  898. result->err += 2.0 * GSL_DBL_EPSILON * fabs(f);
  899. if(jterm == itmax)
  900. GSL_ERROR ("error", GSL_EMAXITER);
  901. else
  902. return GSL_SUCCESS;
  903. }
  904. }
  905. /* asymptotic expansion
  906. * j + 2.0 > 0.0
  907. */
  908. static
  909. int
  910. fd_asymp(const double j, const double x, gsl_sf_result * result)
  911. {
  912. const int j_integer = ( fabs(j - floor(j+0.5)) < 100.0*GSL_DBL_EPSILON );
  913. const int itmax = 200;
  914. gsl_sf_result lg;
  915. int stat_lg = gsl_sf_lngamma_e(j + 2.0, &lg);
  916. double seqn_val = 0.5;
  917. double seqn_err = 0.0;
  918. double xm2 = (1.0/x)/x;
  919. double xgam = 1.0;
  920. double add = GSL_DBL_MAX;
  921. double cos_term;
  922. double ln_x;
  923. double ex_term_1;
  924. double ex_term_2;
  925. gsl_sf_result fneg;
  926. gsl_sf_result ex_arg;
  927. gsl_sf_result ex;
  928. int stat_fneg;
  929. int stat_e;
  930. int n;
  931. for(n=1; n<=itmax; n++) {
  932. double add_previous = add;
  933. gsl_sf_result eta;
  934. gsl_sf_eta_int_e(2*n, &eta);
  935. xgam = xgam * xm2 * (j + 1.0 - (2*n-2)) * (j + 1.0 - (2*n-1));
  936. add = eta.val * xgam;
  937. if(!j_integer && fabs(add) > fabs(add_previous)) break;
  938. if(fabs(add/seqn_val) < GSL_DBL_EPSILON) break;
  939. seqn_val += add;
  940. seqn_err += 2.0 * GSL_DBL_EPSILON * fabs(add);
  941. }
  942. seqn_err += fabs(add);
  943. stat_fneg = fd_neg(j, -x, &fneg);
  944. ln_x = log(x);
  945. ex_term_1 = (j+1.0)*ln_x;
  946. ex_term_2 = lg.val;
  947. ex_arg.val = ex_term_1 - ex_term_2; /*(j+1.0)*ln_x - lg.val; */
  948. ex_arg.err = GSL_DBL_EPSILON*(fabs(ex_term_1) + fabs(ex_term_2)) + lg.err;
  949. stat_e = gsl_sf_exp_err_e(ex_arg.val, ex_arg.err, &ex);
  950. cos_term = cos(j*M_PI);
  951. result->val = cos_term * fneg.val + 2.0 * seqn_val * ex.val;
  952. result->err = fabs(2.0 * ex.err * seqn_val);
  953. result->err += fabs(2.0 * ex.val * seqn_err);
  954. result->err += fabs(cos_term) * fneg.err;
  955. result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
  956. return GSL_ERROR_SELECT_3(stat_e, stat_fneg, stat_lg);
  957. }
  958. /* Series evaluation for small x, generic j.
  959. * [Goano (8)]
  960. */
  961. #if 0
  962. static
  963. int
  964. fd_series(const double j, const double x, double * result)
  965. {
  966. const int nmax = 1000;
  967. int n;
  968. double sum = 0.0;
  969. double prev;
  970. double pow_factor = 1.0;
  971. double eta_factor;
  972. gsl_sf_eta_e(j + 1.0, &eta_factor);
  973. prev = pow_factor * eta_factor;
  974. sum += prev;
  975. for(n=1; n<nmax; n++) {
  976. double term;
  977. gsl_sf_eta_e(j+1.0-n, &eta_factor);
  978. pow_factor *= x/n;
  979. term = pow_factor * eta_factor;
  980. sum += term;
  981. if(fabs(term/sum) < GSL_DBL_EPSILON && fabs(prev/sum) < GSL_DBL_EPSILON) break;
  982. prev = term;
  983. }
  984. *result = sum;
  985. return GSL_SUCCESS;
  986. }
  987. #endif /* 0 */
  988. /* Series evaluation for small x > 0, integer j > 0; x < Pi.
  989. * [Goano (8)]
  990. */
  991. static
  992. int
  993. fd_series_int(const int j, const double x, gsl_sf_result * result)
  994. {
  995. int n;
  996. double sum = 0.0;
  997. double del;
  998. double pow_factor = 1.0;
  999. gsl_sf_result eta_factor;
  1000. gsl_sf_eta_int_e(j + 1, &eta_factor);
  1001. del = pow_factor * eta_factor.val;
  1002. sum += del;
  1003. /* Sum terms where the argument
  1004. * of eta() is positive.
  1005. */
  1006. for(n=1; n<=j+2; n++) {
  1007. gsl_sf_eta_int_e(j+1-n, &eta_factor);
  1008. pow_factor *= x/n;
  1009. del = pow_factor * eta_factor.val;
  1010. sum += del;
  1011. if(fabs(del/sum) < GSL_DBL_EPSILON) break;
  1012. }
  1013. /* Now sum the terms where eta() is negative.
  1014. * The argument of eta() must be odd as well,
  1015. * so it is convenient to transform the series
  1016. * as follows:
  1017. *
  1018. * Sum[ eta(j+1-n) x^n / n!, {n,j+4,Infinity}]
  1019. * = x^j / j! Sum[ eta(1-2m) x^(2m) j! / (2m+j)! , {m,2,Infinity}]
  1020. *
  1021. * We do not need to do this sum if j is large enough.
  1022. */
  1023. if(j < 32) {
  1024. int m;
  1025. gsl_sf_result jfact;
  1026. double sum2;
  1027. double pre2;
  1028. gsl_sf_fact_e((unsigned int)j, &jfact);
  1029. pre2 = gsl_sf_pow_int(x, j) / jfact.val;
  1030. gsl_sf_eta_int_e(-3, &eta_factor);
  1031. pow_factor = x*x*x*x / ((j+4)*(j+3)*(j+2)*(j+1));
  1032. sum2 = eta_factor.val * pow_factor;
  1033. for(m=3; m<24; m++) {
  1034. gsl_sf_eta_int_e(1-2*m, &eta_factor);
  1035. pow_factor *= x*x / ((j+2*m)*(j+2*m-1));
  1036. sum2 += eta_factor.val * pow_factor;
  1037. }
  1038. sum += pre2 * sum2;
  1039. }
  1040. result->val = sum;
  1041. result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
  1042. return GSL_SUCCESS;
  1043. }
  1044. /* series of hypergeometric functions for integer j > 0, x > 0
  1045. * [Goano (7)]
  1046. */
  1047. static
  1048. int
  1049. fd_UMseries_int(const int j, const double x, gsl_sf_result * result)
  1050. {
  1051. const int nmax = 2000;
  1052. double pre;
  1053. double lnpre_val;
  1054. double lnpre_err;
  1055. double sum_even_val = 1.0;
  1056. double sum_even_err = 0.0;
  1057. double sum_odd_val = 0.0;
  1058. double sum_odd_err = 0.0;
  1059. int stat_sum;
  1060. int stat_e;
  1061. int stat_h = GSL_SUCCESS;
  1062. int n;
  1063. if(x < 500.0 && j < 80) {
  1064. double p = gsl_sf_pow_int(x, j+1);
  1065. gsl_sf_result g;
  1066. gsl_sf_fact_e(j+1, &g); /* Gamma(j+2) */
  1067. lnpre_val = 0.0;
  1068. lnpre_err = 0.0;
  1069. pre = p/g.val;
  1070. }
  1071. else {
  1072. double lnx = log(x);
  1073. gsl_sf_result lg;
  1074. gsl_sf_lngamma_e(j + 2.0, &lg);
  1075. lnpre_val = (j+1.0)*lnx - lg.val;
  1076. lnpre_err = 2.0 * GSL_DBL_EPSILON * fabs((j+1.0)*lnx) + lg.err;
  1077. pre = 1.0;
  1078. }
  1079. /* Add up the odd terms of the sum.
  1080. */
  1081. for(n=1; n<nmax; n+=2) {
  1082. double del_val;
  1083. double del_err;
  1084. gsl_sf_result U;
  1085. gsl_sf_result M;
  1086. int stat_h_U = gsl_sf_hyperg_U_int_e(1, j+2, n*x, &U);
  1087. int stat_h_F = gsl_sf_hyperg_1F1_int_e(1, j+2, -n*x, &M);
  1088. stat_h = GSL_ERROR_SELECT_3(stat_h, stat_h_U, stat_h_F);
  1089. del_val = ((j+1.0)*U.val - M.val);
  1090. del_err = (fabs(j+1.0)*U.err + M.err);
  1091. sum_odd_val += del_val;
  1092. sum_odd_err += del_err;
  1093. if(fabs(del_val/sum_odd_val) < GSL_DBL_EPSILON) break;
  1094. }
  1095. /* Add up the even terms of the sum.
  1096. */
  1097. for(n=2; n<nmax; n+=2) {
  1098. double del_val;
  1099. double del_err;
  1100. gsl_sf_result U;
  1101. gsl_sf_result M;
  1102. int stat_h_U = gsl_sf_hyperg_U_int_e(1, j+2, n*x, &U);
  1103. int stat_h_F = gsl_sf_hyperg_1F1_int_e(1, j+2, -n*x, &M);
  1104. stat_h = GSL_ERROR_SELECT_3(stat_h, stat_h_U, stat_h_F);
  1105. del_val = ((j+1.0)*U.val - M.val);
  1106. del_err = (fabs(j+1.0)*U.err + M.err);
  1107. sum_even_val -= del_val;
  1108. sum_even_err += del_err;
  1109. if(fabs(del_val/sum_even_val) < GSL_DBL_EPSILON) break;
  1110. }
  1111. stat_sum = ( n >= nmax ? GSL_EMAXITER : GSL_SUCCESS );
  1112. stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
  1113. pre*(sum_even_val + sum_odd_val),
  1114. pre*(sum_even_err + sum_odd_err),
  1115. result);
  1116. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  1117. return GSL_ERROR_SELECT_3(stat_e, stat_h, stat_sum);
  1118. }
  1119. /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
  1120. /* [Goano (4)] */
  1121. int gsl_sf_fermi_dirac_m1_e(const double x, gsl_sf_result * result)
  1122. {
  1123. if(x < GSL_LOG_DBL_MIN) {
  1124. UNDERFLOW_ERROR(result);
  1125. }
  1126. else if(x < 0.0) {
  1127. const double ex = exp(x);
  1128. result->val = ex/(1.0+ex);
  1129. result->err = 2.0 * (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(result->val);
  1130. return GSL_SUCCESS;
  1131. }
  1132. else {
  1133. double ex = exp(-x);
  1134. result->val = 1.0/(1.0 + ex);
  1135. result->err = 2.0 * GSL_DBL_EPSILON * (x + 1.0) * ex;
  1136. return GSL_SUCCESS;
  1137. }
  1138. }
  1139. /* [Goano (3)] */
  1140. int gsl_sf_fermi_dirac_0_e(const double x, gsl_sf_result * result)
  1141. {
  1142. if(x < GSL_LOG_DBL_MIN) {
  1143. UNDERFLOW_ERROR(result);
  1144. }
  1145. else if(x < -5.0) {
  1146. double ex = exp(x);
  1147. double ser = 1.0 - ex*(0.5 - ex*(1.0/3.0 - ex*(1.0/4.0 - ex*(1.0/5.0 - ex/6.0))));
  1148. result->val = ex * ser;
  1149. result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  1150. return GSL_SUCCESS;
  1151. }
  1152. else if(x < 10.0) {
  1153. result->val = log(1.0 + exp(x));
  1154. result->err = fabs(x * GSL_DBL_EPSILON);
  1155. return GSL_SUCCESS;
  1156. }
  1157. else {
  1158. double ex = exp(-x);
  1159. result->val = x + ex * (1.0 - 0.5*ex + ex*ex/3.0 - ex*ex*ex/4.0);
  1160. result->err = (x + ex) * GSL_DBL_EPSILON;
  1161. return GSL_SUCCESS;
  1162. }
  1163. }
  1164. int gsl_sf_fermi_dirac_1_e(const double x, gsl_sf_result * result)
  1165. {
  1166. if(x < GSL_LOG_DBL_MIN) {
  1167. UNDERFLOW_ERROR(result);
  1168. }
  1169. else if(x < -1.0) {
  1170. /* series [Goano (6)]
  1171. */
  1172. double ex = exp(x);
  1173. double term = ex;
  1174. double sum = term;
  1175. int n;
  1176. for(n=2; n<100 ; n++) {
  1177. double rat = (n-1.0)/n;
  1178. term *= -ex * rat * rat;
  1179. sum += term;
  1180. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  1181. }
  1182. result->val = sum;
  1183. result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
  1184. return GSL_SUCCESS;
  1185. }
  1186. else if(x < 1.0) {
  1187. return cheb_eval_e(&fd_1_a_cs, x, result);
  1188. }
  1189. else if(x < 4.0) {
  1190. double t = 2.0/3.0*(x-1.0) - 1.0;
  1191. return cheb_eval_e(&fd_1_b_cs, t, result);
  1192. }
  1193. else if(x < 10.0) {
  1194. double t = 1.0/3.0*(x-4.0) - 1.0;
  1195. return cheb_eval_e(&fd_1_c_cs, t, result);
  1196. }
  1197. else if(x < 30.0) {
  1198. double t = 0.1*x - 2.0;
  1199. gsl_sf_result c;
  1200. cheb_eval_e(&fd_1_d_cs, t, &c);
  1201. result->val = c.val * x*x;
  1202. result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val);
  1203. return GSL_SUCCESS;
  1204. }
  1205. else if(x < 1.0/GSL_SQRT_DBL_EPSILON) {
  1206. double t = 60.0/x - 1.0;
  1207. gsl_sf_result c;
  1208. cheb_eval_e(&fd_1_e_cs, t, &c);
  1209. result->val = c.val * x*x;
  1210. result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val);
  1211. return GSL_SUCCESS;
  1212. }
  1213. else if(x < GSL_SQRT_DBL_MAX) {
  1214. result->val = 0.5 * x*x;
  1215. result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  1216. return GSL_SUCCESS;
  1217. }
  1218. else {
  1219. OVERFLOW_ERROR(result);
  1220. }
  1221. }
  1222. int gsl_sf_fermi_dirac_2_e(const double x, gsl_sf_result * result)
  1223. {
  1224. if(x < GSL_LOG_DBL_MIN) {
  1225. UNDERFLOW_ERROR(result);
  1226. }
  1227. else if(x < -1.0) {
  1228. /* series [Goano (6)]
  1229. */
  1230. double ex = exp(x);
  1231. double term = ex;
  1232. double sum = term;
  1233. int n;
  1234. for(n=2; n<100 ; n++) {
  1235. double rat = (n-1.0)/n;
  1236. term *= -ex * rat * rat * rat;
  1237. sum += term;
  1238. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  1239. }
  1240. result->val = sum;
  1241. result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
  1242. return GSL_SUCCESS;
  1243. }
  1244. else if(x < 1.0) {
  1245. return cheb_eval_e(&fd_2_a_cs, x, result);
  1246. }
  1247. else if(x < 4.0) {
  1248. double t = 2.0/3.0*(x-1.0) - 1.0;
  1249. return cheb_eval_e(&fd_2_b_cs, t, result);
  1250. }
  1251. else if(x < 10.0) {
  1252. double t = 1.0/3.0*(x-4.0) - 1.0;
  1253. return cheb_eval_e(&fd_2_c_cs, t, result);
  1254. }
  1255. else if(x < 30.0) {
  1256. double t = 0.1*x - 2.0;
  1257. gsl_sf_result c;
  1258. cheb_eval_e(&fd_2_d_cs, t, &c);
  1259. result->val = c.val * x*x*x;
  1260. result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val);
  1261. return GSL_SUCCESS;
  1262. }
  1263. else if(x < 1.0/GSL_ROOT3_DBL_EPSILON) {
  1264. double t = 60.0/x - 1.0;
  1265. gsl_sf_result c;
  1266. cheb_eval_e(&fd_2_e_cs, t, &c);
  1267. result->val = c.val * x*x*x;
  1268. result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val);
  1269. return GSL_SUCCESS;
  1270. }
  1271. else if(x < GSL_ROOT3_DBL_MAX) {
  1272. result->val = 1.0/6.0 * x*x*x;
  1273. result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val);
  1274. return GSL_SUCCESS;
  1275. }
  1276. else {
  1277. OVERFLOW_ERROR(result);
  1278. }
  1279. }
  1280. int gsl_sf_fermi_dirac_int_e(const int j, const double x, gsl_sf_result * result)
  1281. {
  1282. if(j < -1) {
  1283. return fd_nint(j, x, result);
  1284. }
  1285. else if (j == -1) {
  1286. return gsl_sf_fermi_dirac_m1_e(x, result);
  1287. }
  1288. else if(j == 0) {
  1289. return gsl_sf_fermi_dirac_0_e(x, result);
  1290. }
  1291. else if(j == 1) {
  1292. return gsl_sf_fermi_dirac_1_e(x, result);
  1293. }
  1294. else if(j == 2) {
  1295. return gsl_sf_fermi_dirac_2_e(x, result);
  1296. }
  1297. else if(x < 0.0) {
  1298. return fd_neg(j, x, result);
  1299. }
  1300. else if(x == 0.0) {
  1301. return gsl_sf_eta_int_e(j+1, result);
  1302. }
  1303. else if(x < 1.5) {
  1304. return fd_series_int(j, x, result);
  1305. }
  1306. else {
  1307. gsl_sf_result fasymp;
  1308. int stat_asymp = fd_asymp(j, x, &fasymp);
  1309. if(stat_asymp == GSL_SUCCESS) {
  1310. result->val = fasymp.val;
  1311. result->err = fasymp.err;
  1312. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  1313. return stat_asymp;
  1314. }
  1315. else {
  1316. return fd_UMseries_int(j, x, result);
  1317. }
  1318. }
  1319. }
  1320. int gsl_sf_fermi_dirac_mhalf_e(const double x, gsl_sf_result * result)
  1321. {
  1322. if(x < GSL_LOG_DBL_MIN) {
  1323. UNDERFLOW_ERROR(result);
  1324. }
  1325. else if(x < -1.0) {
  1326. /* series [Goano (6)]
  1327. */
  1328. double ex = exp(x);
  1329. double term = ex;
  1330. double sum = term;
  1331. int n;
  1332. for(n=2; n<200 ; n++) {
  1333. double rat = (n-1.0)/n;
  1334. term *= -ex * sqrt(rat);
  1335. sum += term;
  1336. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  1337. }
  1338. result->val = sum;
  1339. result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
  1340. return GSL_SUCCESS;
  1341. }
  1342. else if(x < 1.0) {
  1343. return cheb_eval_e(&fd_mhalf_a_cs, x, result);
  1344. }
  1345. else if(x < 4.0) {
  1346. double t = 2.0/3.0*(x-1.0) - 1.0;
  1347. return cheb_eval_e(&fd_mhalf_b_cs, t, result);
  1348. }
  1349. else if(x < 10.0) {
  1350. double t = 1.0/3.0*(x-4.0) - 1.0;
  1351. return cheb_eval_e(&fd_mhalf_c_cs, t, result);
  1352. }
  1353. else if(x < 30.0) {
  1354. double rtx = sqrt(x);
  1355. double t = 0.1*x - 2.0;
  1356. gsl_sf_result c;
  1357. cheb_eval_e(&fd_mhalf_d_cs, t, &c);
  1358. result->val = c.val * rtx;
  1359. result->err = c.err * rtx + 0.5 * GSL_DBL_EPSILON * fabs(result->val);
  1360. return GSL_SUCCESS;
  1361. }
  1362. else {
  1363. return fd_asymp(-0.5, x, result);
  1364. }
  1365. }
  1366. int gsl_sf_fermi_dirac_half_e(const double x, gsl_sf_result * result)
  1367. {
  1368. if(x < GSL_LOG_DBL_MIN) {
  1369. UNDERFLOW_ERROR(result);
  1370. }
  1371. else if(x < -1.0) {
  1372. /* series [Goano (6)]
  1373. */
  1374. double ex = exp(x);
  1375. double term = ex;
  1376. double sum = term;
  1377. int n;
  1378. for(n=2; n<100 ; n++) {
  1379. double rat = (n-1.0)/n;
  1380. term *= -ex * rat * sqrt(rat);
  1381. sum += term;
  1382. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  1383. }
  1384. result->val = sum;
  1385. result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
  1386. return GSL_SUCCESS;
  1387. }
  1388. else if(x < 1.0) {
  1389. return cheb_eval_e(&fd_half_a_cs, x, result);
  1390. }
  1391. else if(x < 4.0) {
  1392. double t = 2.0/3.0*(x-1.0) - 1.0;
  1393. return cheb_eval_e(&fd_half_b_cs, t, result);
  1394. }
  1395. else if(x < 10.0) {
  1396. double t = 1.0/3.0*(x-4.0) - 1.0;
  1397. return cheb_eval_e(&fd_half_c_cs, t, result);
  1398. }
  1399. else if(x < 30.0) {
  1400. double x32 = x*sqrt(x);
  1401. double t = 0.1*x - 2.0;
  1402. gsl_sf_result c;
  1403. cheb_eval_e(&fd_half_d_cs, t, &c);
  1404. result->val = c.val * x32;
  1405. result->err = c.err * x32 + 1.5 * GSL_DBL_EPSILON * fabs(result->val);
  1406. return GSL_SUCCESS;
  1407. }
  1408. else {
  1409. return fd_asymp(0.5, x, result);
  1410. }
  1411. }
  1412. int gsl_sf_fermi_dirac_3half_e(const double x, gsl_sf_result * result)
  1413. {
  1414. if(x < GSL_LOG_DBL_MIN) {
  1415. UNDERFLOW_ERROR(result);
  1416. }
  1417. else if(x < -1.0) {
  1418. /* series [Goano (6)]
  1419. */
  1420. double ex = exp(x);
  1421. double term = ex;
  1422. double sum = term;
  1423. int n;
  1424. for(n=2; n<100 ; n++) {
  1425. double rat = (n-1.0)/n;
  1426. term *= -ex * rat * rat * sqrt(rat);
  1427. sum += term;
  1428. if(fabs(term/sum) < GSL_DBL_EPSILON) break;
  1429. }
  1430. result->val = sum;
  1431. result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
  1432. return GSL_SUCCESS;
  1433. }
  1434. else if(x < 1.0) {
  1435. return cheb_eval_e(&fd_3half_a_cs, x, result);
  1436. }
  1437. else if(x < 4.0) {
  1438. double t = 2.0/3.0*(x-1.0) - 1.0;
  1439. return cheb_eval_e(&fd_3half_b_cs, t, result);
  1440. }
  1441. else if(x < 10.0) {
  1442. double t = 1.0/3.0*(x-4.0) - 1.0;
  1443. return cheb_eval_e(&fd_3half_c_cs, t, result);
  1444. }
  1445. else if(x < 30.0) {
  1446. double x52 = x*x*sqrt(x);
  1447. double t = 0.1*x - 2.0;
  1448. gsl_sf_result c;
  1449. cheb_eval_e(&fd_3half_d_cs, t, &c);
  1450. result->val = c.val * x52;
  1451. result->err = c.err * x52 + 2.5 * GSL_DBL_EPSILON * fabs(result->val);
  1452. return GSL_SUCCESS;
  1453. }
  1454. else {
  1455. return fd_asymp(1.5, x, result);
  1456. }
  1457. }
  1458. /* [Goano p. 222] */
  1459. int gsl_sf_fermi_dirac_inc_0_e(const double x, const double b, gsl_sf_result * result)
  1460. {
  1461. if(b < 0.0) {
  1462. DOMAIN_ERROR(result);
  1463. }
  1464. else {
  1465. double arg = b - x;
  1466. gsl_sf_result f0;
  1467. int status = gsl_sf_fermi_dirac_0_e(arg, &f0);
  1468. result->val = f0.val - arg;
  1469. result->err = f0.err + GSL_DBL_EPSILON * (fabs(x) + fabs(b));
  1470. return status;
  1471. }
  1472. }
  1473. /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
  1474. #include "gsl_specfunc__eval.h"
  1475. double gsl_sf_fermi_dirac_m1(const double x)
  1476. {
  1477. EVAL_RESULT(gsl_sf_fermi_dirac_m1_e(x, &result));
  1478. }
  1479. double gsl_sf_fermi_dirac_0(const double x)
  1480. {
  1481. EVAL_RESULT(gsl_sf_fermi_dirac_0_e(x, &result));
  1482. }
  1483. double gsl_sf_fermi_dirac_1(const double x)
  1484. {
  1485. EVAL_RESULT(gsl_sf_fermi_dirac_1_e(x, &result));
  1486. }
  1487. double gsl_sf_fermi_dirac_2(const double x)
  1488. {
  1489. EVAL_RESULT(gsl_sf_fermi_dirac_2_e(x, &result));
  1490. }
  1491. double gsl_sf_fermi_dirac_int(const int j, const double x)
  1492. {
  1493. EVAL_RESULT(gsl_sf_fermi_dirac_int_e(j, x, &result));
  1494. }
  1495. double gsl_sf_fermi_dirac_mhalf(const double x)
  1496. {
  1497. EVAL_RESULT(gsl_sf_fermi_dirac_mhalf_e(x, &result));
  1498. }
  1499. double gsl_sf_fermi_dirac_half(const double x)
  1500. {
  1501. EVAL_RESULT(gsl_sf_fermi_dirac_half_e(x, &result));
  1502. }
  1503. double gsl_sf_fermi_dirac_3half(const double x)
  1504. {
  1505. EVAL_RESULT(gsl_sf_fermi_dirac_3half_e(x, &result));
  1506. }
  1507. double gsl_sf_fermi_dirac_inc_0(const double x, const double b)
  1508. {
  1509. EVAL_RESULT(gsl_sf_fermi_dirac_inc_0_e(x, b, &result));
  1510. }