123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- /* specfunc/gsl_sf_zeta.h
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- /* Author: G. Jungman */
- #ifndef __GSL_SF_ZETA_H__
- #define __GSL_SF_ZETA_H__
- #include "gsl_sf_result.h"
- #undef __BEGIN_DECLS
- #undef __END_DECLS
- #ifdef __cplusplus
- # define __BEGIN_DECLS extern "C" {
- # define __END_DECLS }
- #else
- # define __BEGIN_DECLS /* empty */
- # define __END_DECLS /* empty */
- #endif
- __BEGIN_DECLS
- /* Riemann Zeta Function
- * zeta(n) = Sum[ k^(-n), {k,1,Infinity} ]
- *
- * n=integer, n != 1
- * exceptions: GSL_EDOM, GSL_EOVRFLW
- */
- int gsl_sf_zeta_int_e(const int n, gsl_sf_result * result);
- double gsl_sf_zeta_int(const int n);
- /* Riemann Zeta Function
- * zeta(x) = Sum[ k^(-s), {k,1,Infinity} ], s != 1.0
- *
- * s != 1.0
- * exceptions: GSL_EDOM, GSL_EOVRFLW
- */
- int gsl_sf_zeta_e(const double s, gsl_sf_result * result);
- double gsl_sf_zeta(const double s);
- /* Riemann Zeta Function minus 1
- * useful for evaluating the fractional part
- * of Riemann zeta for large argument
- *
- * s != 1.0
- * exceptions: GSL_EDOM, GSL_EOVRFLW
- */
- int gsl_sf_zetam1_e(const double s, gsl_sf_result * result);
- double gsl_sf_zetam1(const double s);
- /* Riemann Zeta Function minus 1 for integer arg
- * useful for evaluating the fractional part
- * of Riemann zeta for large argument
- *
- * s != 1.0
- * exceptions: GSL_EDOM, GSL_EOVRFLW
- */
- int gsl_sf_zetam1_int_e(const int s, gsl_sf_result * result);
- double gsl_sf_zetam1_int(const int s);
- /* Hurwitz Zeta Function
- * zeta(s,q) = Sum[ (k+q)^(-s), {k,0,Infinity} ]
- *
- * s > 1.0, q > 0.0
- * exceptions: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW
- */
- int gsl_sf_hzeta_e(const double s, const double q, gsl_sf_result * result);
- double gsl_sf_hzeta(const double s, const double q);
- /* Eta Function
- * eta(n) = (1-2^(1-n)) zeta(n)
- *
- * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
- */
- int gsl_sf_eta_int_e(int n, gsl_sf_result * result);
- double gsl_sf_eta_int(const int n);
- /* Eta Function
- * eta(s) = (1-2^(1-s)) zeta(s)
- *
- * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
- */
- int gsl_sf_eta_e(const double s, gsl_sf_result * result);
- double gsl_sf_eta(const double s);
- __END_DECLS
- #endif /* __GSL_SF_ZETA_H__ */
|