123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- /* randist/gauss.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough
- * Copyright (C) 2006 Charles Karney
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- #include "gsl__config.h"
- #include <math.h>
- #include "gsl_math.h"
- #include "gsl_rng.h"
- #include "gsl_randist.h"
- /* Of the two methods provided below, I think the Polar method is more
- * efficient, but only when you are actually producing two random
- * deviates. We don't produce two, because then we'd have to save one
- * in a static variable for the next call, and that would screws up
- * re-entrant or threaded code, so we only produce one. This makes
- * the Ratio method suddenly more appealing.
- *
- * [Added by Charles Karney] We use Leva's implementation of the Ratio
- * method which avoids calling log() nearly all the time and makes the
- * Ratio method faster than the Polar method (when it produces just one
- * result per call). Timing per call (gcc -O2 on 866MHz Pentium,
- * average over 10^8 calls)
- *
- * Polar method: 660 ns
- * Ratio method: 368 ns
- *
- */
- /* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */
- double
- gsl_ran_gaussian (const gsl_rng * r, const double sigma)
- {
- double x, y, r2;
- do
- {
- /* choose x,y in uniform square (-1,-1) to (+1,+1) */
- x = -1 + 2 * gsl_rng_uniform_pos (r);
- y = -1 + 2 * gsl_rng_uniform_pos (r);
- /* see if it is in the unit circle */
- r2 = x * x + y * y;
- }
- while (r2 > 1.0 || r2 == 0);
- /* Box-Muller transform */
- return sigma * y * sqrt (-2.0 * log (r2) / r2);
- }
- /* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130.
- * K+M, ACM Trans Math Software 3 (1977) 257-260.
- *
- * [Added by Charles Karney] This is an implementation of Leva's
- * modifications to the original K+M method; see:
- * J. L. Leva, ACM Trans Math Software 18 (1992) 449-453 and 454-455. */
- double
- gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma)
- {
- double u, v, x, y, Q;
- const double s = 0.449871; /* Constants from Leva */
- const double t = -0.386595;
- const double a = 0.19600;
- const double b = 0.25472;
- const double r1 = 0.27597;
- const double r2 = 0.27846;
- do /* This loop is executed 1.369 times on average */
- {
- /* Generate a point P = (u, v) uniform in a rectangle enclosing
- the K+M region v^2 <= - 4 u^2 log(u). */
- /* u in (0, 1] to avoid singularity at u = 0 */
- u = 1 - gsl_rng_uniform (r);
- /* v is in the asymmetric interval [-0.5, 0.5). However v = -0.5
- is rejected in the last part of the while clause. The
- resulting normal deviate is strictly symmetric about 0
- (provided that v is symmetric once v = -0.5 is excluded). */
- v = gsl_rng_uniform (r) - 0.5;
- /* Constant 1.7156 > sqrt(8/e) (for accuracy); but not by too
- much (for efficiency). */
- v *= 1.7156;
- /* Compute Leva's quadratic form Q */
- x = u - s;
- y = fabs (v) - t;
- Q = x * x + y * (a * y - b * x);
- /* Accept P if Q < r1 (Leva) */
- /* Reject P if Q > r2 (Leva) */
- /* Accept if v^2 <= -4 u^2 log(u) (K+M) */
- /* This final test is executed 0.012 times on average. */
- }
- while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u)));
- return sigma * (v / u); /* Return slope */
- }
- double
- gsl_ran_gaussian_pdf (const double x, const double sigma)
- {
- double u = x / fabs (sigma);
- double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
- return p;
- }
- double
- gsl_ran_ugaussian (const gsl_rng * r)
- {
- return gsl_ran_gaussian (r, 1.0);
- }
- double
- gsl_ran_ugaussian_ratio_method (const gsl_rng * r)
- {
- return gsl_ran_gaussian_ratio_method (r, 1.0);
- }
- double
- gsl_ran_ugaussian_pdf (const double x)
- {
- return gsl_ran_gaussian_pdf (x, 1.0);
- }
|