123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /* randist/gamma.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- #include "gsl__config.h"
- #include <math.h>
- #include "gsl_math.h"
- #include "gsl_sf_gamma.h"
- #include "gsl_rng.h"
- #include "gsl_randist.h"
- static double gamma_large (const gsl_rng * r, const double a);
- static double gamma_frac (const gsl_rng * r, const double a);
- /* The Gamma distribution of order a>0 is defined by:
- p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx
- for x>0. If X and Y are independent gamma-distributed random
- variables of order a1 and a2 with the same scale parameter b, then
- X+Y has gamma distribution of order a1+a2.
- The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */
- double
- gsl_ran_gamma_knuth (const gsl_rng * r, const double a, const double b)
- {
- /* assume a > 0 */
- unsigned int na = floor (a);
- if (a == na)
- {
- return b * gsl_ran_gamma_int (r, na);
- }
- else if (na == 0)
- {
- return b * gamma_frac (r, a);
- }
- else
- {
- return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ;
- }
- }
- double
- gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a)
- {
- if (a < 12)
- {
- unsigned int i;
- double prod = 1;
- for (i = 0; i < a; i++)
- {
- prod *= gsl_rng_uniform_pos (r);
- }
- /* Note: for 12 iterations we are safe against underflow, since
- the smallest positive random number is O(2^-32). This means
- the smallest possible product is 2^(-12*32) = 10^-116 which
- is within the range of double precision. */
- return -log (prod);
- }
- else
- {
- return gamma_large (r, (double) a);
- }
- }
- static double
- gamma_large (const gsl_rng * r, const double a)
- {
- /* Works only if a > 1, and is most efficient if a is large
- This algorithm, reported in Knuth, is attributed to Ahrens. A
- faster one, we are told, can be found in: J. H. Ahrens and
- U. Dieter, Computing 12 (1974) 223-246. */
- double sqa, x, y, v;
- sqa = sqrt (2 * a - 1);
- do
- {
- do
- {
- y = tan (M_PI * gsl_rng_uniform (r));
- x = sqa * y + a - 1;
- }
- while (x <= 0);
- v = gsl_rng_uniform (r);
- }
- while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y));
- return x;
- }
- static double
- gamma_frac (const gsl_rng * r, const double a)
- {
- /* This is exercise 16 from Knuth; see page 135, and the solution is
- on page 551. */
- double p, q, x, u, v;
- p = M_E / (a + M_E);
- do
- {
- u = gsl_rng_uniform (r);
- v = gsl_rng_uniform_pos (r);
- if (u < p)
- {
- x = exp ((1 / a) * log (v));
- q = exp (-x);
- }
- else
- {
- x = 1 - log (v);
- q = exp ((a - 1) * log (x));
- }
- }
- while (gsl_rng_uniform (r) >= q);
- return x;
- }
- double
- gsl_ran_gamma_pdf (const double x, const double a, const double b)
- {
- if (x < 0)
- {
- return 0 ;
- }
- else if (x == 0)
- {
- if (a == 1)
- return 1/b ;
- else
- return 0 ;
- }
- else if (a == 1)
- {
- return exp(-x/b)/b ;
- }
- else
- {
- double p;
- double lngamma = gsl_sf_lngamma (a);
- p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b;
- return p;
- }
- }
- /* New version based on Marsaglia and Tsang, "A Simple Method for
- * generating gamma variables", ACM Transactions on Mathematical
- * Software, Vol 26, No 3 (2000), p363-372.
- *
- * Implemented by J.D.Lamb@btinternet.com, minor modifications for GSL
- * by Brian Gough
- */
- double
- gsl_ran_gamma_mt (const gsl_rng * r, const double a, const double b)
- {
- return gsl_ran_gamma (r, a, b);
- }
- double
- gsl_ran_gamma (const gsl_rng * r, const double a, const double b)
- {
- /* assume a > 0 */
- if (a < 1)
- {
- double u = gsl_rng_uniform_pos (r);
- return gsl_ran_gamma (r, 1.0 + a, b) * pow (u, 1.0 / a);
- }
- {
- double x, v, u;
- double d = a - 1.0 / 3.0;
- double c = (1.0 / 3.0) / sqrt (d);
- while (1)
- {
- do
- {
- x = gsl_ran_gaussian_ziggurat (r, 1.0);
- v = 1.0 + c * x;
- }
- while (v <= 0);
- v = v * v * v;
- u = gsl_rng_uniform_pos (r);
- if (u < 1 - 0.0331 * x * x * x * x)
- break;
- if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
- break;
- }
-
- return b * d * v;
- }
- }
|