123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- /* ode-initval/rk4.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- /* Runge-Kutta 4th order, Classical */
- /* Author: G. Jungman
- */
- /* Reference: Abramowitz & Stegun, section 25.5. equation 25.5.10
- Error estimation by step doubling, see eg. Ascher, U.M., Petzold,
- L.R., Computer methods for ordinary differential and
- differential-algebraic equations, SIAM, Philadelphia, 1998.
- */
- #include "gsl__config.h"
- #include <stdlib.h>
- #include <string.h>
- #include "gsl_errno.h"
- #include "gsl_odeiv.h"
- #include "gsl_ode-initval__odeiv_util.h"
- typedef struct
- {
- double *k;
- double *k1;
- double *y0;
- double *ytmp;
- double *y_onestep;
- }
- rk4_state_t;
- static void *
- rk4_alloc (size_t dim)
- {
- rk4_state_t *state = (rk4_state_t *) malloc (sizeof (rk4_state_t));
- if (state == 0)
- {
- GSL_ERROR_NULL ("failed to allocate space for rk4_state", GSL_ENOMEM);
- }
- state->k = (double *) malloc (dim * sizeof (double));
- if (state->k == 0)
- {
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM);
- }
- state->k1 = (double *) malloc (dim * sizeof (double));
- if (state->k1 == 0)
- {
- free (state);
- free (state->k);
- GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM);
- }
- state->y0 = (double *) malloc (dim * sizeof (double));
- if (state->y0 == 0)
- {
- free (state->k);
- free (state->k1);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);
- }
- state->ytmp = (double *) malloc (dim * sizeof (double));
- if (state->ytmp == 0)
- {
- free (state->y0);
- free (state->k);
- free (state->k1);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);
- }
- state->y_onestep = (double *) malloc (dim * sizeof (double));
- if (state->y_onestep == 0)
- {
- free (state->ytmp);
- free (state->y0);
- free (state->k);
- free (state->k1);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);
- }
- return state;
- }
- static int
- rk4_step (double *y, const rk4_state_t *state,
- const double h, const double t, const size_t dim,
- const gsl_odeiv_system *sys)
- {
- /* Makes a Runge-Kutta 4th order advance with step size h. */
-
- /* initial values of variables y. */
- const double *y0 = state->y0;
-
- /* work space */
- double *ytmp = state->ytmp;
- /* Runge-Kutta coefficients. Contains values of coefficient k1
- in the beginning
- */
- double *k = state->k;
- size_t i;
- /* k1 step */
- for (i = 0; i < dim; i++)
- {
- y[i] += h / 6.0 * k[i];
- ytmp[i] = y0[i] + 0.5 * h * k[i];
- }
- /* k2 step */
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- for (i = 0; i < dim; i++)
- {
- y[i] += h / 3.0 * k[i];
- ytmp[i] = y0[i] + 0.5 * h * k[i];
- }
- /* k3 step */
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- for (i = 0; i < dim; i++)
- {
- y[i] += h / 3.0 * k[i];
- ytmp[i] = y0[i] + h * k[i];
- }
- /* k4 step */
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- for (i = 0; i < dim; i++)
- {
- y[i] += h / 6.0 * k[i];
- }
- return GSL_SUCCESS;
- }
- static int
- rk4_apply (void *vstate,
- size_t dim,
- double t,
- double h,
- double y[],
- double yerr[],
- const double dydt_in[],
- double dydt_out[],
- const gsl_odeiv_system * sys)
- {
- rk4_state_t *state = (rk4_state_t *) vstate;
- size_t i;
- double *const k = state->k;
- double *const k1 = state->k1;
- double *const y0 = state->y0;
- double *const y_onestep = state->y_onestep;
- DBL_MEMCPY (y0, y, dim);
- if (dydt_in != NULL)
- {
- DBL_MEMCPY (k, dydt_in, dim);
- }
- else
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t, y0, k);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- /* Error estimation is done by step doubling procedure */
- /* Save first point derivatives*/
-
- DBL_MEMCPY (k1, k, dim);
- /* First traverse h with one step (save to y_onestep) */
- DBL_MEMCPY (y_onestep, y, dim);
- {
- int s = rk4_step (y_onestep, state, h, t, dim, sys);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- /* Then with two steps with half step length (save to y) */
- DBL_MEMCPY (k, k1, dim);
- {
- int s = rk4_step (y, state, h/2.0, t, dim, sys);
- if (s != GSL_SUCCESS)
- {
- /* Restore original values */
- DBL_MEMCPY (y, y0, dim);
- return s;
- }
- }
- /* Update before second step */
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k);
- if (s != GSL_SUCCESS)
- {
- /* Restore original values */
- DBL_MEMCPY (y, y0, dim);
- return s;
- }
- }
-
- /* Save original y0 to k1 for possible failures */
- DBL_MEMCPY (k1, y0, dim);
- /* Update y0 for second step */
- DBL_MEMCPY (y0, y, dim);
- {
- int s = rk4_step (y, state, h/2.0, t + h/2.0, dim, sys);
- if (s != GSL_SUCCESS)
- {
- /* Restore original values */
- DBL_MEMCPY (y, k1, dim);
- return s;
- }
- }
- /* Derivatives at output */
- if (dydt_out != NULL) {
- int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);
- if (s != GSL_SUCCESS)
- {
- /* Restore original values */
- DBL_MEMCPY (y, k1, dim);
- return s;
- }
- }
-
- /* Error estimation
- yerr = C * 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1)
- constant C is approximately 8.0 to ensure 90% of samples lie within
- the error (assuming a gaussian distribution with prior p(sigma)=1/sigma.)
- */
- for (i = 0; i < dim; i++)
- {
- yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 15.0;
- }
- return GSL_SUCCESS;
- }
- static int
- rk4_reset (void *vstate, size_t dim)
- {
- rk4_state_t *state = (rk4_state_t *) vstate;
- DBL_ZERO_MEMSET (state->k, dim);
- DBL_ZERO_MEMSET (state->k1, dim);
- DBL_ZERO_MEMSET (state->y0, dim);
- DBL_ZERO_MEMSET (state->ytmp, dim);
- DBL_ZERO_MEMSET (state->y_onestep, dim);
- return GSL_SUCCESS;
- }
- static unsigned int
- rk4_order (void *vstate)
- {
- rk4_state_t *state = (rk4_state_t *) vstate;
- state = 0; /* prevent warnings about unused parameters */
- return 4;
- }
- static void
- rk4_free (void *vstate)
- {
- rk4_state_t *state = (rk4_state_t *) vstate;
- free (state->k);
- free (state->k1);
- free (state->y0);
- free (state->ytmp);
- free (state->y_onestep);
- free (state);
- }
- static const gsl_odeiv_step_type rk4_type = { "rk4", /* name */
- 1, /* can use dydt_in */
- 1, /* gives exact dydt_out */
- &rk4_alloc,
- &rk4_apply,
- &rk4_reset,
- &rk4_order,
- &rk4_free
- };
- const gsl_odeiv_step_type *gsl_odeiv_step_rk4 = &rk4_type;
|