123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- /* ode-initval/rk2simp.c
- *
- * Copyright (C) 2004 Tuomo Keskitalo
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- /* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule.
- Non-linear equations solved by linearization, LU-decomposition
- and matrix inversion. For reference, see eg.
- Ascher, U.M., Petzold, L.R., Computer methods for ordinary
- differential and differential-algebraic equations, SIAM,
- Philadelphia, 1998.
- */
- #include "gsl__config.h"
- #include <stdlib.h>
- #include <string.h>
- #include "gsl_math.h"
- #include "gsl_errno.h"
- #include "gsl_odeiv.h"
- #include "gsl_linalg.h"
- #include "gsl_ode-initval__odeiv_util.h"
- typedef struct
- {
- double *Y1;
- double *y0;
- double *y0_orig;
- double *ytmp;
- double *dfdy; /* Jacobian */
- double *dfdt; /* time derivatives, not used */
- double *y_onestep;
- gsl_permutation *p;
- }
- rk2simp_state_t;
- static void *
- rk2simp_alloc (size_t dim)
- {
- rk2simp_state_t *state =
- (rk2simp_state_t *) malloc (sizeof (rk2simp_state_t));
- if (state == 0)
- {
- GSL_ERROR_NULL ("failed to allocate space for rk2simp_state",
- GSL_ENOMEM);
- }
- state->Y1 = (double *) malloc (dim * sizeof (double));
- if (state->Y1 == 0)
- {
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM);
- }
- state->y0 = (double *) malloc (dim * sizeof (double));
- if (state->y0 == 0)
- {
- free (state->Y1);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);
- }
- state->y0_orig = (double *) malloc (dim * sizeof (double));
- if (state->y0_orig == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM);
- }
- state->ytmp = (double *) malloc (dim * sizeof (double));
- if (state->ytmp == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);
- }
- state->dfdy = (double *) malloc (dim * dim * sizeof (double));
- if (state->dfdy == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state->ytmp);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM);
- }
- state->dfdt = (double *) malloc (dim * sizeof (double));
- if (state->dfdt == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state->ytmp);
- free (state->dfdy);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM);
- }
- state->y_onestep = (double *) malloc (dim * sizeof (double));
- if (state->y_onestep == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state->ytmp);
- free (state->dfdy);
- free (state->dfdt);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM);
- }
- state->p = gsl_permutation_alloc (dim);
- if (state->p == 0)
- {
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state->ytmp);
- free (state->dfdy);
- free (state->dfdt);
- free (state);
- GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM);
- }
- return state;
- }
- static int
- rk2simp_step (double *y, rk2simp_state_t * state,
- const double h, const double t,
- const size_t dim, const gsl_odeiv_system * sys)
- {
- /* Makes a Runge-Kutta 2nd order semi-implicit advance with step size h.
- y0 is initial values of variables y.
- The linearized semi-implicit equations to calculate are:
- Y1 = y0 + h/2 * (1 - h/2 * df/dy)^(-1) * f(t + h/2, y0)
- y = y0 + h * f(t + h/2, Y1)
- */
- const double *y0 = state->y0;
- double *Y1 = state->Y1;
- double *ytmp = state->ytmp;
- size_t i;
- int s, ps;
- gsl_matrix_view J = gsl_matrix_view_array (state->dfdy, dim, dim);
- /* First solve Y1.
- Calculate the inverse matrix (1 - h/2 * df/dy)^-1
- */
- /* Create matrix to J */
- s = GSL_ODEIV_JA_EVAL (sys, t, y0, state->dfdy, state->dfdt);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- gsl_matrix_scale (&J.matrix, -h / 2.0);
- gsl_matrix_add_diagonal(&J.matrix, 1.0);
- /* Invert it by LU-decomposition to invmat */
- s += gsl_linalg_LU_decomp (&J.matrix, state->p, &ps);
- if (s != GSL_SUCCESS)
- {
- return GSL_EFAILED;
- }
- /* Evaluate f(t + h/2, y0) */
- s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, y0, ytmp);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- /* Calculate Y1 = y0 + h/2 * ((1-h/2 * df/dy)^-1) ytmp */
- {
- gsl_vector_const_view y0_view = gsl_vector_const_view_array(y0, dim);
- gsl_vector_view ytmp_view = gsl_vector_view_array(ytmp, dim);
- gsl_vector_view Y1_view = gsl_vector_view_array(Y1, dim);
- s = gsl_linalg_LU_solve (&J.matrix, state->p,
- &ytmp_view.vector, &Y1_view.vector);
-
- gsl_vector_scale (&Y1_view.vector, 0.5 * h);
- gsl_vector_add (&Y1_view.vector, &y0_view.vector);
- }
- /* And finally evaluation of f(t + h/2, Y1) and calculation of y */
- s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, Y1, ytmp);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- for (i = 0; i < dim; i++)
- {
- y[i] = y0[i] + h * ytmp[i];
- }
- return s;
- }
- static int
- rk2simp_apply (void *vstate, size_t dim, double t, double h,
- double y[], double yerr[], const double dydt_in[],
- double dydt_out[], const gsl_odeiv_system * sys)
- {
- rk2simp_state_t *state = (rk2simp_state_t *) vstate;
- size_t i;
- double *y0 = state->y0;
- double *y0_orig = state->y0_orig;
- double *y_onestep = state->y_onestep;
- /* Error estimation is done by step doubling procedure */
- DBL_MEMCPY (y0, y, dim);
- /* Save initial values in case of failure */
- DBL_MEMCPY (y0_orig, y, dim);
- /* First traverse h with one step (save to y_onestep) */
- DBL_MEMCPY (y_onestep, y, dim);
- {
- int s = rk2simp_step (y_onestep, state, h, t, dim, sys);
- if (s != GSL_SUCCESS)
- {
- return s;
- }
- }
- /* Then with two steps with half step length (save to y) */
- {
- int s = rk2simp_step (y, state, h / 2.0, t, dim, sys);
- if (s != GSL_SUCCESS)
- {
- /* Restore original y vector */
- DBL_MEMCPY (y, y0_orig, dim);
- return s;
- }
- }
- DBL_MEMCPY (y0, y, dim);
- {
- int s = rk2simp_step (y, state, h / 2.0, t + h / 2.0, dim, sys);
- if (s != GSL_SUCCESS)
- {
- /* Restore original y vector */
- DBL_MEMCPY (y, y0_orig, dim);
- return s;
- }
- }
- /* Derivatives at output */
- if (dydt_out != NULL)
- {
- int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);
- if (s != GSL_SUCCESS)
- {
- /* Restore original y vector */
- DBL_MEMCPY (y, y0_orig, dim);
- return s;
- }
- }
- /* Error estimation */
- for (i = 0; i < dim; i++)
- {
- yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0;
- }
- return GSL_SUCCESS;
- }
- static int
- rk2simp_reset (void *vstate, size_t dim)
- {
- rk2simp_state_t *state = (rk2simp_state_t *) vstate;
- DBL_ZERO_MEMSET (state->Y1, dim);
- DBL_ZERO_MEMSET (state->y0, dim);
- DBL_ZERO_MEMSET (state->y0_orig, dim);
- DBL_ZERO_MEMSET (state->ytmp, dim);
- DBL_ZERO_MEMSET (state->dfdt, dim * dim);
- DBL_ZERO_MEMSET (state->dfdt, dim);
- DBL_ZERO_MEMSET (state->y_onestep, dim);
- return GSL_SUCCESS;
- }
- static unsigned int
- rk2simp_order (void *vstate)
- {
- rk2simp_state_t *state = (rk2simp_state_t *) vstate;
- state = 0; /* prevent warnings about unused parameters */
- return 2;
- }
- static void
- rk2simp_free (void *vstate)
- {
- rk2simp_state_t *state = (rk2simp_state_t *) vstate;
- free (state->Y1);
- free (state->y0);
- free (state->y0_orig);
- free (state->ytmp);
- free (state->dfdy);
- free (state->dfdt);
- free (state->y_onestep);
- gsl_permutation_free (state->p);
- free (state);
- }
- static const gsl_odeiv_step_type rk2simp_type = {
- "rk2simp", /* name */
- 0, /* can use dydt_in? */
- 1, /* gives exact dydt_out? */
- &rk2simp_alloc,
- &rk2simp_apply,
- &rk2simp_reset,
- &rk2simp_order,
- &rk2simp_free
- };
- const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp = &rk2simp_type;
|