123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- /* linalg/lq.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough
- * Copyright (C) 2004 Joerg Wensch, modifications for LQ.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- #include "gsl__config.h"
- #include <stdlib.h>
- #include <string.h>
- #include "gsl_math.h"
- #include "gsl_vector.h"
- #include "gsl_matrix.h"
- #include "gsl_blas.h"
- #include "gsl_linalg.h"
- #define REAL double
- #include "gsl_linalg__givens.c"
- #include "gsl_linalg__apply_givens.c"
- /* Note: The standard in numerical linear algebra is to solve A x = b
- * resp. ||A x - b||_2 -> min by QR-decompositions where x, b are
- * column vectors.
- *
- * When the matrix A has a large number of rows it is much more
- * efficient to work with the transposed matrix A^T and to solve the
- * system x^T A = b^T resp. ||x^T A - b^T||_2 -> min. This is caused
- * by the row-oriented format in which GSL stores matrices. Therefore
- * the QR-decomposition of A has to be replaced by a LQ decomposition
- * of A^T
- *
- * The purpose of this package is to provide the algorithms to compute
- * the LQ-decomposition and to solve the linear equations resp. least
- * squares problems. The dimensions N, M of the matrix are switched
- * because here A will probably be a transposed matrix. We write x^T,
- * b^T,... for vectors the comments to emphasize that they are row
- * vectors.
- *
- * It may even be useful to transpose your matrix explicitly (assumed
- * that there are no memory restrictions) because this takes O(M x N)
- * computing time where the decompostion takes O(M x N^2) computing
- * time. */
- /* Factorise a general N x M matrix A into
- *
- * A = L Q
- *
- * where Q is orthogonal (M x M) and L is lower triangular (N x M).
- *
- * Q is stored as a packed set of Householder transformations in the
- * strict upper triangular part of the input matrix.
- *
- * R is stored in the diagonal and lower triangle of the input matrix.
- *
- * The full matrix for Q can be obtained as the product
- *
- * Q = Q_k .. Q_2 Q_1
- *
- * where k = MIN(M,N) and
- *
- * Q_i = (I - tau_i * v_i * v_i')
- *
- * and where v_i is a Householder vector
- *
- * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)]
- *
- * This storage scheme is the same as in LAPACK. */
- int
- gsl_linalg_LQ_decomp (gsl_matrix * A, gsl_vector * tau)
- {
- const size_t N = A->size1;
- const size_t M = A->size2;
- if (tau->size != GSL_MIN (M, N))
- {
- GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
- }
- else
- {
- size_t i;
- for (i = 0; i < GSL_MIN (M, N); i++)
- {
- /* Compute the Householder transformation to reduce the j-th
- column of the matrix to a multiple of the j-th unit vector */
- gsl_vector_view c_full = gsl_matrix_row (A, i);
- gsl_vector_view c = gsl_vector_subvector (&(c_full.vector), i, M-i);
- double tau_i = gsl_linalg_householder_transform (&(c.vector));
- gsl_vector_set (tau, i, tau_i);
- /* Apply the transformation to the remaining columns and
- update the norms */
- if (i + 1 < N)
- {
- gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i, N - (i + 1), M - i );
- gsl_linalg_householder_mh (tau_i, &(c.vector), &(m.matrix));
- }
- }
- return GSL_SUCCESS;
- }
- }
- /* Solves the system x^T A = b^T using the LQ factorisation,
- * x^T L = b^T Q^T
- *
- * to obtain x. Based on SLATEC code.
- */
- int
- gsl_linalg_LQ_solve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x)
- {
- if (LQ->size1 != LQ->size2)
- {
- GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);
- }
- else if (LQ->size2 != b->size)
- {
- GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
- }
- else if (LQ->size1 != x->size)
- {
- GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
- }
- else
- {
- /* Copy x <- b */
- gsl_vector_memcpy (x, b);
- /* Solve for x */
- gsl_linalg_LQ_svx_T (LQ, tau, x);
- return GSL_SUCCESS;
- }
- }
- /* Solves the system x^T A = b^T in place using the LQ factorisation,
- *
- * x^T L = b^T Q^T
- *
- * to obtain x. Based on SLATEC code.
- */
- int
- gsl_linalg_LQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * x)
- {
- if (LQ->size1 != LQ->size2)
- {
- GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);
- }
- else if (LQ->size1 != x->size)
- {
- GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN);
- }
- else
- {
- /* compute rhs = Q^T b */
- gsl_linalg_LQ_vecQT (LQ, tau, x);
- /* Solve R x = rhs, storing x in-place */
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);
- return GSL_SUCCESS;
- }
- }
- /* Find the least squares solution to the overdetermined system
- *
- * x^T A = b^T
- *
- * for M >= N using the LQ factorization A = L Q.
- */
- int
- gsl_linalg_LQ_lssolve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual)
- {
- const size_t N = LQ->size1;
- const size_t M = LQ->size2;
- if (M < N)
- {
- GSL_ERROR ("LQ matrix must have M>=N", GSL_EBADLEN);
- }
- else if (M != b->size)
- {
- GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
- }
- else if (N != x->size)
- {
- GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
- }
- else if (M != residual->size)
- {
- GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
- }
- else
- {
- gsl_matrix_const_view L = gsl_matrix_const_submatrix (LQ, 0, 0, N, N);
- gsl_vector_view c = gsl_vector_subvector(residual, 0, N);
- gsl_vector_memcpy(residual, b);
- /* compute rhs = b^T Q^T */
- gsl_linalg_LQ_vecQT (LQ, tau, residual);
- /* Solve x^T L = rhs */
- gsl_vector_memcpy(x, &(c.vector));
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, &(L.matrix), x);
- /* Compute residual = b^T - x^T A = (b^T Q^T - x^T L) Q */
-
- gsl_vector_set_zero(&(c.vector));
- gsl_linalg_LQ_vecQ(LQ, tau, residual);
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_LQ_Lsolve_T (const gsl_matrix * LQ, const gsl_vector * b, gsl_vector * x)
- {
- if (LQ->size1 != LQ->size2)
- {
- GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);
- }
- else if (LQ->size1 != b->size)
- {
- GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
- }
- else if (LQ->size1 != x->size)
- {
- GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);
- }
- else
- {
- /* Copy x <- b */
- gsl_vector_memcpy (x, b);
- /* Solve R x = b, storing x in-place */
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_LQ_Lsvx_T (const gsl_matrix * LQ, gsl_vector * x)
- {
- if (LQ->size1 != LQ->size2)
- {
- GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);
- }
- else if (LQ->size2 != x->size)
- {
- GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN);
- }
- else
- {
- /* Solve x^T L = b^T, storing x in-place */
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_L_solve_T (const gsl_matrix * L, const gsl_vector * b, gsl_vector * x)
- {
- if (L->size1 != L->size2)
- {
- GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);
- }
- else if (L->size2 != b->size)
- {
- GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
- }
- else if (L->size1 != x->size)
- {
- GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
- }
- else
- {
- /* Copy x <- b */
- gsl_vector_memcpy (x, b);
- /* Solve R x = b, storing x inplace in b */
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x);
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_LQ_vecQT (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v)
- {
- const size_t N = LQ->size1;
- const size_t M = LQ->size2;
- if (tau->size != GSL_MIN (M, N))
- {
- GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
- }
- else if (v->size != M)
- {
- GSL_ERROR ("vector size must be M", GSL_EBADLEN);
- }
- else
- {
- size_t i;
- /* compute v Q^T */
- for (i = 0; i < GSL_MIN (M, N); i++)
- {
- gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);
- gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector),
- i, M - i);
- gsl_vector_view w = gsl_vector_subvector (v, i, M - i);
- double ti = gsl_vector_get (tau, i);
- gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector));
- }
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_LQ_vecQ (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v)
- {
- const size_t N = LQ->size1;
- const size_t M = LQ->size2;
- if (tau->size != GSL_MIN (M, N))
- {
- GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
- }
- else if (v->size != M)
- {
- GSL_ERROR ("vector size must be M", GSL_EBADLEN);
- }
- else
- {
- size_t i;
- /* compute v Q^T */
-
- for (i = GSL_MIN (M, N); i > 0 && i--;)
- {
- gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);
- gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector),
- i, M - i);
- gsl_vector_view w = gsl_vector_subvector (v, i, M - i);
- double ti = gsl_vector_get (tau, i);
- gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector));
- }
- return GSL_SUCCESS;
- }
- }
- /* Form the orthogonal matrix Q from the packed LQ matrix */
- int
- gsl_linalg_LQ_unpack (const gsl_matrix * LQ, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L)
- {
- const size_t N = LQ->size1;
- const size_t M = LQ->size2;
- if (Q->size1 != M || Q->size2 != M)
- {
- GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);
- }
- else if (L->size1 != N || L->size2 != M)
- {
- GSL_ERROR ("R matrix must be N x M", GSL_ENOTSQR);
- }
- else if (tau->size != GSL_MIN (M, N))
- {
- GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
- }
- else
- {
- size_t i, j, l_border;
- /* Initialize Q to the identity */
- gsl_matrix_set_identity (Q);
- for (i = GSL_MIN (M, N); i > 0 && i--;)
- {
- gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);
- gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector,
- i, M - i);
- gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i);
- double ti = gsl_vector_get (tau, i);
- gsl_linalg_householder_mh (ti, &h.vector, &m.matrix);
- }
- /* Form the lower triangular matrix L from a packed LQ matrix */
- for (i = 0; i < N; i++)
- {
- l_border=GSL_MIN(i,M-1);
- for (j = 0; j <= l_border ; j++)
- gsl_matrix_set (L, i, j, gsl_matrix_get (LQ, i, j));
- for (j = l_border+1; j < M; j++)
- gsl_matrix_set (L, i, j, 0.0);
- }
- return GSL_SUCCESS;
- }
- }
- /* Update a LQ factorisation for A= L Q , A' = A + v u^T,
- * L' Q' = LQ + v u^T
- * = (L + v u^T Q^T) Q
- * = (L + v w^T) Q
- *
- * where w = Q u.
- *
- * Algorithm from Golub and Van Loan, "Matrix Computations", Section
- * 12.5 (Updating Matrix Factorizations, Rank-One Changes)
- */
- int
- gsl_linalg_LQ_update (gsl_matrix * Q, gsl_matrix * L,
- const gsl_vector * v, gsl_vector * w)
- {
- const size_t N = L->size1;
- const size_t M = L->size2;
- if (Q->size1 != M || Q->size2 != M)
- {
- GSL_ERROR ("Q matrix must be N x N if L is M x N", GSL_ENOTSQR);
- }
- else if (w->size != M)
- {
- GSL_ERROR ("w must be length N if L is M x N", GSL_EBADLEN);
- }
- else if (v->size != N)
- {
- GSL_ERROR ("v must be length M if L is M x N", GSL_EBADLEN);
- }
- else
- {
- size_t j, k;
- double w0;
- /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0)
- J_1^T .... J_(n-1)^T w = +/- |w| e_1
- simultaneously applied to L, H = J_1^T ... J^T_(n-1) L
- so that H is upper Hessenberg. (12.5.2) */
-
- for (k = M - 1; k > 0; k--)
- {
- double c, s;
- double wk = gsl_vector_get (w, k);
- double wkm1 = gsl_vector_get (w, k - 1);
- create_givens (wkm1, wk, &c, &s);
- apply_givens_vec (w, k - 1, k, c, s);
- apply_givens_lq (M, N, Q, L, k - 1, k, c, s);
- }
- w0 = gsl_vector_get (w, 0);
- /* Add in v w^T (Equation 12.5.3) */
- for (j = 0; j < N; j++)
- {
- double lj0 = gsl_matrix_get (L, j, 0);
- double vj = gsl_vector_get (v, j);
- gsl_matrix_set (L, j, 0, lj0 + w0 * vj);
- }
- /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H
- Equation 12.5.4 */
- for (k = 1; k < GSL_MIN(M,N+1); k++)
- {
- double c, s;
- double diag = gsl_matrix_get (L, k - 1, k - 1);
- double offdiag = gsl_matrix_get (L, k - 1 , k);
- create_givens (diag, offdiag, &c, &s);
- apply_givens_lq (M, N, Q, L, k - 1, k, c, s);
- gsl_matrix_set (L, k - 1, k, 0.0); /* exact zero of G^T */
- }
- return GSL_SUCCESS;
- }
- }
- int
- gsl_linalg_LQ_LQsolve (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * b, gsl_vector * x)
- {
- const size_t N = L->size1;
- const size_t M = L->size2;
- if (M != N)
- {
- return GSL_ENOTSQR;
- }
- else if (Q->size1 != M || b->size != M || x->size != M)
- {
- return GSL_EBADLEN;
- }
- else
- {
- /* compute sol = b^T Q^T */
- gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x);
- /* Solve x^T L = sol, storing x in-place */
- gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x);
- return GSL_SUCCESS;
- }
- }
|