123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- /* eigen/genherm.c
- *
- * Copyright (C) 2007 Patrick Alken
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- #include <stdlib.h>
- #include "gsl__config.h"
- #include "gsl_eigen.h"
- #include "gsl_linalg.h"
- #include "gsl_math.h"
- #include "gsl_blas.h"
- #include "gsl_vector.h"
- #include "gsl_matrix.h"
- #include "gsl_complex.h"
- #include "gsl_complex_math.h"
- /*
- * This module computes the eigenvalues of a complex generalized
- * hermitian-definite eigensystem A x = \lambda B x, where A and
- * B are hermitian, and B is positive-definite.
- */
- /*
- gsl_eigen_genherm_alloc()
- Allocate a workspace for solving the generalized hermitian-definite
- eigenvalue problem. The size of this workspace is O(3n).
- Inputs: n - size of matrices
- Return: pointer to workspace
- */
- gsl_eigen_genherm_workspace *
- gsl_eigen_genherm_alloc(const size_t n)
- {
- gsl_eigen_genherm_workspace *w;
- if (n == 0)
- {
- GSL_ERROR_NULL ("matrix dimension must be positive integer",
- GSL_EINVAL);
- }
- w = (gsl_eigen_genherm_workspace *) calloc (1, sizeof (gsl_eigen_genherm_workspace));
- if (w == 0)
- {
- GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
- }
- w->size = n;
- w->herm_workspace_p = gsl_eigen_herm_alloc(n);
- if (!w->herm_workspace_p)
- {
- gsl_eigen_genherm_free(w);
- GSL_ERROR_NULL("failed to allocate space for herm workspace", GSL_ENOMEM);
- }
- return (w);
- } /* gsl_eigen_genherm_alloc() */
- /*
- gsl_eigen_genherm_free()
- Free workspace w
- */
- void
- gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * w)
- {
- if (w->herm_workspace_p)
- gsl_eigen_herm_free(w->herm_workspace_p);
- free(w);
- } /* gsl_eigen_genherm_free() */
- /*
- gsl_eigen_genherm()
- Solve the generalized hermitian-definite eigenvalue problem
- A x = \lambda B x
- for the eigenvalues \lambda.
- Inputs: A - complex hermitian matrix
- B - complex hermitian and positive definite matrix
- eval - where to store eigenvalues
- w - workspace
- Return: success or error
- */
- int
- gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B,
- gsl_vector * eval, gsl_eigen_genherm_workspace * w)
- {
- const size_t N = A->size1;
- /* check matrix and vector sizes */
- if (N != A->size2)
- {
- GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
- }
- else if ((N != B->size1) || (N != B->size2))
- {
- GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN);
- }
- else if (eval->size != N)
- {
- GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
- }
- else if (w->size != N)
- {
- GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN);
- }
- else
- {
- int s;
- /* compute Cholesky factorization of B */
- s = gsl_linalg_complex_cholesky_decomp(B);
- if (s != GSL_SUCCESS)
- return s; /* B is not positive definite */
- /* transform to standard hermitian eigenvalue problem */
- gsl_eigen_genherm_standardize(A, B);
- s = gsl_eigen_herm(A, eval, w->herm_workspace_p);
- return s;
- }
- } /* gsl_eigen_genherm() */
- /*
- gsl_eigen_genherm_standardize()
- Reduce the generalized hermitian-definite eigenproblem to
- the standard hermitian eigenproblem by computing
- C = L^{-1} A L^{-H}
- where L L^H is the Cholesky decomposition of B
- Inputs: A - (input/output) complex hermitian matrix
- B - complex hermitian, positive definite matrix in Cholesky form
- Return: success
- Notes: A is overwritten by L^{-1} A L^{-H}
- */
- int
- gsl_eigen_genherm_standardize(gsl_matrix_complex *A,
- const gsl_matrix_complex *B)
- {
- const size_t N = A->size1;
- size_t i;
- double a, b;
- gsl_complex y, z;
- GSL_SET_IMAG(&z, 0.0);
- for (i = 0; i < N; ++i)
- {
- /* update lower triangle of A(i:n, i:n) */
- y = gsl_matrix_complex_get(A, i, i);
- a = GSL_REAL(y);
- y = gsl_matrix_complex_get(B, i, i);
- b = GSL_REAL(y);
- a /= b * b;
- GSL_SET_REAL(&z, a);
- gsl_matrix_complex_set(A, i, i, z);
- if (i < N - 1)
- {
- gsl_vector_complex_view ai =
- gsl_matrix_complex_subcolumn(A, i, i + 1, N - i - 1);
- gsl_matrix_complex_view ma =
- gsl_matrix_complex_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1);
- gsl_vector_complex_const_view bi =
- gsl_matrix_complex_const_subcolumn(B, i, i + 1, N - i - 1);
- gsl_matrix_complex_const_view mb =
- gsl_matrix_complex_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1);
- gsl_blas_zdscal(1.0 / b, &ai.vector);
- GSL_SET_REAL(&z, -0.5 * a);
- gsl_blas_zaxpy(z, &bi.vector, &ai.vector);
- gsl_blas_zher2(CblasLower,
- GSL_COMPLEX_NEGONE,
- &ai.vector,
- &bi.vector,
- &ma.matrix);
- gsl_blas_zaxpy(z, &bi.vector, &ai.vector);
- gsl_blas_ztrsv(CblasLower,
- CblasNoTrans,
- CblasNonUnit,
- &mb.matrix,
- &ai.vector);
- }
- }
- return GSL_SUCCESS;
- } /* gsl_eigen_genherm_standardize() */
|