123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- /* dht/dht.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- */
- /* Author: G. Jungman
- */
- #include "gsl__config.h"
- #include <stdlib.h>
- #include "gsl_errno.h"
- #include "gsl_math.h"
- #include "gsl_sf_bessel.h"
- #include "gsl_dht.h"
- gsl_dht *
- gsl_dht_alloc (size_t size)
- {
- gsl_dht * t;
- if(size == 0) {
- GSL_ERROR_VAL("size == 0", GSL_EDOM, 0);
- }
- t = (gsl_dht *)malloc(sizeof(gsl_dht));
- if(t == 0) {
- GSL_ERROR_VAL("out of memory", GSL_ENOMEM, 0);
- }
- t->size = size;
- t->xmax = -1.0; /* Make it clear that this needs to be calculated. */
- t->nu = -1.0;
- t->j = (double *)malloc((size+2)*sizeof(double));
- if(t->j == 0) {
- free(t);
- GSL_ERROR_VAL("could not allocate memory for j", GSL_ENOMEM, 0);
- }
- t->Jjj = (double *)malloc(size*(size+1)/2 * sizeof(double));
- if(t->Jjj == 0) {
- free(t->j);
- free(t);
- GSL_ERROR_VAL("could not allocate memory for Jjj", GSL_ENOMEM, 0);
- }
- t->J2 = (double *)malloc((size+1)*sizeof(double));
- if(t->J2 == 0) {
- free(t->Jjj);
- free(t->j);
- free(t);
- GSL_ERROR_VAL("could not allocate memory for J2", GSL_ENOMEM, 0);
- }
- return t;
- }
- /* Handle internal calculation of Bessel zeros. */
- static int
- dht_bessel_zeros(gsl_dht * t)
- {
- unsigned int s;
- gsl_sf_result z;
- int stat_z = 0;
- t->j[0] = 0.0;
- for(s=1; s < t->size + 2; s++) {
- stat_z += gsl_sf_bessel_zero_Jnu_e(t->nu, s, &z);
- t->j[s] = z.val;
- }
- if(stat_z != 0) {
- GSL_ERROR("could not compute bessel zeroes", GSL_EFAILED);
- }
- else {
- return GSL_SUCCESS;
- }
- }
- gsl_dht *
- gsl_dht_new (size_t size, double nu, double xmax)
- {
- int status;
- gsl_dht * dht = gsl_dht_alloc (size);
- if (dht == 0)
- return 0;
- status = gsl_dht_init(dht, nu, xmax);
-
- if (status)
- return 0;
- return dht;
- }
- int
- gsl_dht_init(gsl_dht * t, double nu, double xmax)
- {
- if(xmax <= 0.0) {
- GSL_ERROR ("xmax is not positive", GSL_EDOM);
- } else if(nu < 0.0) {
- GSL_ERROR ("nu is negative", GSL_EDOM);
- }
- else {
- size_t n, m;
- int stat_bz = GSL_SUCCESS;
- int stat_J = 0;
- double jN;
- if(nu != t->nu) {
- /* Recalculate Bessel zeros if necessary. */
- t->nu = nu;
- stat_bz = dht_bessel_zeros(t);
- }
- jN = t->j[t->size+1];
- t->xmax = xmax;
- t->kmax = jN / xmax;
- t->J2[0] = 0.0;
- for(m=1; m<t->size+1; m++) {
- gsl_sf_result J;
- stat_J += gsl_sf_bessel_Jnu_e(nu + 1.0, t->j[m], &J);
- t->J2[m] = J.val * J.val;
- }
- /* J_nu(j[n] j[m] / j[N]) = Jjj[n(n-1)/2 + m - 1], 1 <= n,m <= size
- */
- for(n=1; n<t->size+1; n++) {
- for(m=1; m<=n; m++) {
- double arg = t->j[n] * t->j[m] / jN;
- gsl_sf_result J;
- stat_J += gsl_sf_bessel_Jnu_e(nu, arg, &J);
- t->Jjj[n*(n-1)/2 + m - 1] = J.val;
- }
- }
- if(stat_J != 0) {
- GSL_ERROR("error computing bessel function", GSL_EFAILED);
- }
- else {
- return stat_bz;
- }
- }
- }
- double gsl_dht_x_sample(const gsl_dht * t, int n)
- {
- return t->j[n+1]/t->j[t->size+1] * t->xmax;
- }
- double gsl_dht_k_sample(const gsl_dht * t, int n)
- {
- return t->j[n+1] / t->xmax;
- }
- void gsl_dht_free(gsl_dht * t)
- {
- free(t->J2);
- free(t->Jjj);
- free(t->j);
- free(t);
- }
- int
- gsl_dht_apply(const gsl_dht * t, double * f_in, double * f_out)
- {
- const double jN = t->j[t->size + 1];
- const double r = t->xmax / jN;
- size_t m;
- size_t i;
- for(m=0; m<t->size; m++) {
- double sum = 0.0;
- double Y;
- for(i=0; i<t->size; i++) {
- /* Need to find max and min so that we
- * address the symmetric Jjj matrix properly.
- * FIXME: we can presumably optimize this
- * by just running over the elements of Jjj
- * in a deterministic manner.
- */
- size_t m_local;
- size_t n_local;
- if(i < m) {
- m_local = i;
- n_local = m;
- }
- else {
- m_local = m;
- n_local = i;
- }
- Y = t->Jjj[n_local*(n_local+1)/2 + m_local] / t->J2[i+1];
- sum += Y * f_in[i];
- }
- f_out[m] = sum * 2.0 * r*r;
- }
- return GSL_SUCCESS;
- }
|