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Scattering theory

Lord Rutherford’s gold-foil experiment
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Scattering theory

Rutherford experiment’s conclusions
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measurement + a-priori information = conclusion



Scattering theory

Fixed frequency scattering
\\U’ (x)
CD 1) ]

The total wave u satisfies
(A+ K1+ V))u=0,
V models a perturbation of the background,
u= u'(x) + us(x)
7 AN

incident wave scattered wave
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Mathematical scattering theory: measurements
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Measurement: A, is the far-field pattern of the scattered wave
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Inverse problem

Given the map v’ — A, recover V or its support €.

Early methods (< 85')

» optimization and minimization methods
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Inverse problem

Given the map v’ — A, recover V or its support €.

Early methods (< 85’)

» optimization and minimization methods
Sampling methods

» gives condition on measurements for x € supp V

» compared to before: fast! works reliably!
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Everything solved?
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Everything solved?

NO!

If A,i =0 for some u' # 0 then the above methods faill
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Everything solved?

NO!

If A,i =0 for some u' # 0 then the above methods faill

A, = 0 implies
(A+K)' =0, Q
(A+K(1+V)Iu=0, Q
u—u € H3Q)

k2 is an interior transmission eigenvalue (ITE)

17



Some ITE history

» 86, 88" Kirsch, Colton—Monk: ITE problem posed

» 89, 91’ Colton—Kirsch—Paivarinta, Rynne—Sleeman:
discreteness of ITE
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>

86’, 88" Kirsch, Colton—Monk: ITE problem posed

89', 91' Colton—Kirsch—Paivarinta, Rynne—Sleeman:
discreteness of ITE

91'-08" NOTHING. . .

07', 09' Cakoni—Colton—Monk, Cakoni—Colton—Haddar:
qualitative information about V from ITE's

08' Paivadrinta—Sylvester: existence for general scatterers
10" Cakoni—Gintides—Haddar: infinitely many ITE's

10" Cakoni—Colton—Haddar: ITE's can be deduced from
far-field data

10'+: EXPLOSION OF INTEREST

> interest shifting to “Steklov eigenvalues”



Corner scattering

» B.-Péivédrinta—Sylvester 14: V = x[o oo, ¥(0) # 0 always
scatters, despite having interior transmission eigenvalues
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Corner scattering

» B.-Péivédrinta—Sylvester 14: V = x[o oo, ¥(0) # 0 always
scatters, despite having interior transmission eigenvalues

k2 ITE and A, # 0 Vu' £0
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Proof sketch

Rellich’s theorem and unique continuation imply
k2/ Vi updx = 0

if (A+ k(L + V))up = 0 near supp V.
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Proof sketch

Rellich’s theorem and unique continuation imply
k2/ Vi updx = 0

if (A+ k(L + V))up = 0 near supp V.
In simple case

Holder estimates give

Cle(0)u(O)f 1ol " <

if v, < Clo|~"/P".
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Newer

corner scattering results

Paivarinta—Salo—Vesalainen: 2D any angle, 3D almost any
spherical cone

Hu—-Salo—Vesalainen: smoothness reduction, new arguments,
polygonal scatterer probing

Elschner—Hu: 3D any domain having two faces meet at an
angle
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Newer corner scattering results

» Paivarinta—Salo—Vesalainen: 2D any angle, 3D almost any
spherical cone

» Hu-Salo—Vesalainen: smoothness reduction, new arguments,
polygonal scatterer probing

» Elschner—Hu: 3D any domain having two faces meet at an
angle

Injectivity of support probing:

Theorem
Let P, P" be convex polygons and V = xpp, V' = xprp’ for
admissible functions p,’. Then

P#£P = A, #A,; Yu #£0

Any single incident wave determines P in the class of polygonal
penetrable scatterers.

12 /17



More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint)

Let u' be a normalized Herglotz wave,

i) = [ g(0)do(0), gl = 1

and let V = xpy be admissible.
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More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint)

Let u' be a normalized Herglotz wave,

i) = [ g(0)do(0), gl = 1
and let V = xpy be admissible. Then
||Auf||L2(sn—1) > Cipy|,v >0

where the Taylor expansion of u' at the corner x. begins with Py,
and [|Pn| = Jgn-1 |Pn(6)]| do(6).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”

Well-known: Herglotz waves can approximate transmission
eigenfunctions.

So, mistake in our proof?

- No: C = (jp,. so the bound becomes arbitrarily small for
incident waves that have small value at the corner.
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From contradiction to inspiration

Theorem (B., Liu, preprint)
Let the potential V = xpp be admissible and P C 2. Let v be a
transmission eigenfunction
(A+K)v=0 Q
(A+KA+V)w=0, Q
w—veHQ), [IVlzg =1
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From contradiction to inspiration

Theorem (B., Liu, preprint)
Let the potential V = xpp be admissible and P C 2. Let v be a
transmission eigenfunction
(A+K)v=0 Q
(A+KA+V)w=0, Q
w—veHQ), [IVlzg =1

If v can be approximated by a sequence of Herglotz waves with

uniformly L2-bounded kernels g, then

| 1 -
I B0 o) =0

at every corner point x. of supp V.

15 /17



Transmission eigenfunction localization

Numerical investigation with Xiaofei Li, Hongyu Liu and Yuliang
Wang:
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Thank you for your attention!



