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Scattering theory
Fixed frequency scattering

V (x)

ui (x)

us(x)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

V models a perturbation of the background,

u = ui (x)

incident wave

+ us(x)

scattered wave
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Scattering theory

=

+
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Mathematical scattering theory: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) = eik|x |

|x |(n−1)/2 Aui

( x
|x |

)
+O

(
1
|x |n/2

)
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Inverse problem
Given the map ui 7→ Aui , recover V or its support Ω.

Early methods (< 85’)
I optimization and minimization methods

Sampling methods
I looks for supp V
I compared to before: fast! works reliably!

Methods based on Sylvester–Uhlmann 87 CGO solutions
I countable family (ui

j ,Aui
j
)∞j=1 determines V
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What about in physics?
Lord Rutherford’s gold-foil experiment

Single incident wave
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Scattering theory
Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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Sampling methods

I 96 Colton – Kirsh: linear sampling method (points)

I 98 Ikehata: probing method (curve)
I . . . Luke, Potthast, Sylvester, Kusiak: range test, no response

test (sets)
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Factorization method

Sampling methods gave only1 sufficient conditions for x ∈ supp V .

1except Ikehata’s probing method
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Factorization method

Kirsch 90’s, Grinberg 00’s: factorization method. Gives necessary
and sufficient conditions.
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Factorization method

Idea:

ui (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), g ∈ L2(Sn−1)

us(x) = eik|x |

|x |(n−1)/2 Ag

( x
|x |

)
+O

(
1
|x |n/2

)
the far-field operator

F : L2(Sn−1)→ L2(Sn−1), Fg = Ag

is factored
F = G T G∗

G compact, T isomorphism. The range of G can be characterized
and gives supp V .
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Everything solved?

NO!
If ker F 6= {0} then the above methods fail!

∃g ∈ ker F implies ∃v : Ω→ C

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))u = 0, Ω

u − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

k2 is an interior transmission eigenvalue (ITE)
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Kernel of scattering operator

Let w i be the incident wave

w i (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ)

and assume g ∈ ker F . Then Ag ≡ 0 for the scattered wave w s .

Rellich’s lemma and unique continuation imply w s(x) = 0 for
x ∈ Rn \ supp V .

Hence v = w i and u = w i + w s solve the interior transmission
problem.
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Some ITE history

I 86’, 88’ Kirsch, Colton–Monk: ITE problem posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE

I 91’–08’ nothing. . .
I 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest
I interest shifting to “Steklov eigenvalues”
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Interior transmission eigenvalues VS sampling methods

Recall: ker F 6= {0} =⇒ k2 ITE

Sampling method users avoid ITE’s

Are they too careful?

I Colton–Monk 88: supp V compact, V radial, k2 ITE
=⇒ ker F 6= {0}

I Regge, Newton, Sabatier, Grinevich, Manakov, Novikov
50’s – 90’s: radial potentials transparent at a fixed k2 i.e.
=⇒ ker F = L2(Sn−1)
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Corner scattering

Theorem (B.–Päivärinta–Sylvester 14)
The potential V = χ[0,∞[nϕ, ϕ(0) 6= 0 always scatters.

For any incident wave ui 6= 0 we have AV ,ui 6= A0,ui .
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Proof sketch
Rellich’s theorem and unique continuation imply

k2
∫

Vui u0dx = 0

if (∆ + k2(1 + V ))u0 = 0 near supp V .

In simple case

ui (x) = ui (0) + ui
r (x)

u0(x) = eρ·x (1 + ψ(x))
V (x) = χ[0,∞[n (x)(ϕ(0) + ϕr (x))

Hölder estimates give

C
∣∣∣ϕ(0)ui (0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣ϕ(0)ui (0)

∫
[0,∞[n

eρ·x dx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ‖ψ‖p ≤ C |ρ|−n/p−ε.
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Some newer corner scattering results
I Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any

spherical cone
I Hu–Salo–Vesalainen: smoothness reduction, new arguments,

polygonal scatterer probing
I Elschner–Hu: 3D any domain having two faces meet at an

angle
I Liu–Xiao: electromagnetic waves

Injectivity of support probing:
Theorem (HSV+EH)
Let P,P ′ be convex polyhedra and V = χPϕ, V = χP′ϕ

′ for
admissible functions ϕ,ϕ′. Then

P 6= P ′ =⇒ Aui 6= A′ui ∀ui 6= 0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
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Stability of polygonal scatterer probing
Non-vanishing total wave

Theorem (B., Liu, preprint)
Let ui be an incident wave and let V = χPϕ, V ′ = χP′ϕ

′ be
admissible with |u| , |u′| 6= 0 in BR . If∥∥Aui − A′ui

∥∥
L2(Sn−1) < ε

then
dH(P,P ′) ≤ C(ln ln

∥∥Aui − A′ui
∥∥−1

2 )−η

for some η > 0.

Related work: Probing impenetrable scatterers with few waves:
J. Li, H. Liu, M. Petrini, L. Rondi, J. Xiao, Y. Wang . . .
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Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B., Liu, JFA 2017)
Let ui be a normalized Herglotz wave,

ui (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), ‖g‖L2(Sn−1) = 1,

and let V = χPϕ be admissible. Then

‖Aui‖L2(Sn−1) ≥ C‖PN‖,V > 0

where the Taylor expansion of ui at the corner xc begins with PN ,
and ‖PN‖ =

∫
Sn−1 |PN(θ)| dσ(θ).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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From apparent contradiction to inspiration

Theorem (B., Liu, + B., Li, Liu, Wang, IP + JFA 2017 +
preprint)
Let the potential V = χPϕ be admissible and P ⊂ Ω. Let v be a
transmission eigenfunction:

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))w = 0, Ω

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

Under H2-smoothness of v near xc , we have

lim
r→0

1
m(B(xc , r))

∫
B(xc ,r)

|v(x)| dx = 0

at every corner point xc of supp V .
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Transmission eigenfunction localization
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Piecewise constant recovery

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, preprint)
Let Σj , j = 1, 2, . . . be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V =

∑
j VjχΣj ,

V =
∑

j V ′j χΣj for constants Vj ,V ′j ∈ C. Then

V 6= V ′ =⇒ Aui 6= A′ui ∀ui (x) = eikθ·x

if k > 0 small or |u|+ |u′| 6= 0 at each vertex.
A single incident plane wave determines V in the class of
discretized penetrable scatterers.
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Proof sketch
Integration by parts

k2
∫

Ω
(V − V ′)u′u0dx =

∫
∂Ω

(
(u − u′)∂νu0 − u0∂ν(u − u′)

)
dx

if (∆ + k2(1 + V ))u0 = 0 in Ω.

Simple case: Ω = B(0, ε) ∩ Σj with Σj = ]0, 1[n

u′(x) = u′(0) + u′r (x) u′ ∈ H2 ↪→ C 1/2

u0(x) = eρ·x (1 + ψ(x)) CGO
(V − V ′)(x) = Vj − V ′j piecewise constant

Hölder estimates give

C
∣∣∣(Vj − V ′j )u′(0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣(Vj − V ′j )u′(0)

∫
[0,∞[n

eρ·x dx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ‖ψ‖p ≤ C |ρ|−n/p−ε.
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Generalizations and limitations
I unique determination of corner location and value

I if Σj not known in advance: both (Σj)∞j=1 and V =
∑

j VjχΣj

uniquely determined by a single measurement if geometry
known to be nested

Σ1

Σ2

Σ3

I method cannot yet be shown to distinguish between

V1 V2

V3 V4

V ′
1

V ′
2 V ′

3

V ′
4
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Conclusions

I traditional potential recovery: many probing waves
I physics experiment: one probing wave + much a-priori data
I corners always scatter — even with a “bad” probing wave
I transmission eigenfunctions vanish at corners
I single probing wave

I polyhedral support uniqueness
I piecewise constant potential uniqueness
I some natural questions still unanswered

I if problem is hard, get more a-priori information
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Open questions

I split corner

V1 V2

V3 V4

V ′
1

V ′
2 V ′

3

V ′
4

I show blow-up at non-convex corner (numerical evidence
exists)

I study other eigenfunction properties from spectral theory:
I nodal sets
I nodal domains (Courant’s nodal line theorem: m-th

eigenfunction splits domain into ≤ m nodal domains).
I other boundary shapes (ongoing: value bound as a function of

curvature)
I actual bounds: if

∣∣ui ∣∣ = ε > 0 at corners, then what lower
bound on ‖Aui‖?

26 / 27



Thank you for your attention!
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