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Scattering theory
Lord Rutherford’s gold-foil experiment
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Scattering theory
Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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Scattering theory
Fixed frequency scattering

V (x)

ui (x)

us(x)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

V models a perturbation of the background,

u = ui (x)

incident wave

+ us(x)

scattered wave
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Scattering theory

=

+
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Mathematical scattering theory: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) = eik|x |

|x |(n−1)/2 Aui

( x
|x |

)
+O

(
1
|x |n/2

)
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Inverse problem

Given the map ui 7→ Aui , recover V or its support Ω.

Early methods (< 85’)
I optimization and minimization methods

Sampling methods
I gives condition on measurements for x ∈ supp V
I compared to before: fast! works reliably!
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Everything solved?

NO!
If Aui = 0 for some ui 6= 0 then the above methods fail!

Aui = 0 implies

(∆ + k2)ui = 0, Ω
(∆ + k2(1 + V ))u = 0, Ω

u − ui ∈ H2
0 (Ω)

k2 is an interior transmission eigenvalue (ITE)
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Some ITE history

I 86’, 88’ Kirsch, Colton–Monk: ITE problem posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE

I 91’–08’ nothing. . .
I 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest
I interest shifting to “Steklov eigenvalues”
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I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest

I interest shifting to “Steklov eigenvalues”

9 / 17



Some ITE history

I 86’, 88’ Kirsch, Colton–Monk: ITE problem posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:
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Corner scattering

I B.–Päivärinta–Sylvester 14: V = χ[0,∞[nϕ, ϕ(0) 6= 0 always
scatters, despite having interior transmission eigenvalues

k2 ITE and Aui 6= 0 ∀ui 6= 0
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Proof sketch
Rellich’s theorem and unique continuation imply

k2
∫

Vuiu0dx = 0

if (∆ + k2(1 + V ))u0 = 0 near supp V .

In simple case

ui (x) = ui (0) + ui
r (x)

u0(x) = eρ·x (1 + ψ(x))
V (x) = χ[0,∞[n (x)(ϕ(0) + ϕr (x))

Hölder estimates give

C
∣∣∣ϕ(0)ui (0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣ϕ(0)ui (0)

∫
[0,∞[n

eρ·xdx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ‖ψ‖p ≤ C |ρ|−n/p−ε.
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Newer corner scattering results
I Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any

spherical cone
I Hu–Salo–Vesalainen: smoothness reduction, new arguments,

polygonal scatterer probing
I Elschner–Hu: 3D any domain having two faces meet at an

angle

Injectivity of support probing:

Theorem
Let P,P ′ be convex polygons and V = χPϕ, V ′ = χP′ϕ

′ for
admissible functions ϕ,ϕ′. Then

P 6= P ′ =⇒ Aui 6= A′ui ∀ui 6= 0

Any single incident wave determines P in the class of polygonal
penetrable scatterers.
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More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint)
Let ui be a normalized Herglotz wave,

ui (x) =
∫
Sn−1

eikθ·xg(θ)dσ(θ), ‖g‖L2(Sn−1) = 1,

and let V = χPϕ be admissible.

Then

‖Aui‖L2(Sn−1) ≥ C‖PN‖,V > 0

where the Taylor expansion of ui at the corner xc begins with PN ,
and ‖PN‖ =

∫
Sn−1 |PN(θ)| dσ(θ).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”

Well-known: Herglotz waves can approximate transmission
eigenfunctions.

So, mistake in our proof?
– No: C = C‖PN‖, so the bound becomes arbitrarily small for
incident waves that have small value at the corner.
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From contradiction to inspiration

Theorem (B., Liu, preprint)
Let the potential V = χPϕ be admissible and P ⊂ Ω. Let v be a
transmission eigenfunction

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))w = 0, Ω

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

If v can be approximated by a sequence of Herglotz waves with
uniformly L2-bounded kernels g , then

lim
r→0

1
m(B(xc , r))

∫
B(xc ,r)

|v(x)| dx = 0

at every corner point xc of supp V .
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Transmission eigenfunction localization

Numerical investigation with Xiaofei Li, Hongyu Liu and Yuliang
Wang:
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Thank you for your attention!
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