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Scattering theory
Fixed frequency scattering

V (x)

ui (x)

us(x)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

V models a perturbation of the background,

u = ui (x)

incident wave

+ us(x)

scattered wave
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Scattering theory

=

+
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Mathematical scattering theory: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) = eik|x |

|x |(n−1)/2 Aui

( x
|x |

)
+O

(
1
|x |n/2

)
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Inverse problems

Given the far-field map ui 7→ Aui , recover V or its support Ω.

Solved when
I full far-field map given for all large frequencies (Saito 84),
I full far-field map given for a single frequency

(Sylvester–Uhlmann 87 n ≥ 3 + Bukhgeim 07 n = 2),
I + countless other variations

Focus on single measurement: Aui given only for a single ui .

Schiffer’s problem: can a single measurement determine Ω?
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What about in physics?
Lord Rutherford’s gold-foil experiment

Single incident wave
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Scattering theory
Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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What if the measurement gives nothing?

If Aui = 0 but ui 6= 0 then

there is v ,w ∈ L2(Ω) \ {0}

(∆ + k2)v = 0, Ω (1)
(∆ + k2(1 + V ))u = 0, Ω (2)

u − v ∈ H2
0 (Ω). (3)

If (1)–(3) has a solution then k2 is an interior transmission
eigenvalue (ITE).
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Interior transmission eigenvalues VS sampling methods

Recall: Aui = 0, ui 6= 0 =⇒ k2 ITE

Sampling method users avoid ITE’s

Are they too careful?

I Colton–Monk 88: supp V compact, V radial, k2 ITE
=⇒ ∃ui 6= 0, Aui = 0

I Regge, Newton, Sabatier, Grinevich, Manakov, Novikov
50’s – 90’s: radial potentials transparent at a fixed k2 i.e.
=⇒ Aui = 0 ∀ui
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Corner scattering

Theorem (B.–Päivärinta–Sylvester CMP 14)
The potential V = χ[0,∞[nϕ, ϕ(0) 6= 0 always scatters.

For any incident wave ui 6= 0 we have Aui 6= 0.
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Some follow-up corner scattering results
I Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any

spherical cone
I Hu–Salo–Vesalainen: smoothness reduction, new arguments,

polygonal scatterer probing
I Elschner–Hu: 3D any domain having two faces meet at an

angle, and also curved edges
I Liu–Xiao: electromagnetic waves

Injectivity of support probing:
Theorem (HSV+EH)
Let P,P ′ be convex polyhedra and V = χPϕ, V = χP′ϕ

′ for
admissible functions ϕ,ϕ′. Then

P 6= P ′ =⇒ Aui 6= A′ui ∀ui 6= 0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
However Ikehata’s enclosure method gives roughly the same!
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My work while in Hong Kong
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Stability of polygonal scatterer probing
Non-vanishing total wave

Theorem (B., Liu, preprint)
Let ui be an incident wave and let V = χPϕ, V ′ = χP′ϕ

′ be
admissible with |u| , |u′| 6= 0 in BR . If∥∥Aui − A′ui

∥∥
L2(Sn−1) < ε

then
dH(P,P ′) ≤ C(ln ln

∥∥Aui − A′ui
∥∥−1

2 )−η

for some η > 0.

13 / 27



Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B., Liu, JFA 2017)
Let ui be a normalized Herglotz wave,

ui (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), ‖g‖L2(Sn−1) = 1,

and let V = χPϕ be admissible. Then

‖Aui‖L2(Sn−1) ≥ C‖PN‖,V > 0

where the Taylor expansion of ui at the corner xc begins with PN ,
and ‖PN‖ =

∫
Sn−1 |PN(θ)| dσ(θ).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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From apparent contradiction to inspiration

Theorem (B., Liu, + B., Li, Liu, Wang, JFA + IP 2017 +
preprint)
Let the potential V = χΩϕ be admissible. Let v ,w 6= 0 be
transmission eigenfunctions:

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))w = 0, Ω

w − v ∈ H2
0 (Ω).

Under Cα-smoothness of v near xc , we have

v(xc) = w(xc) = 0

at every corner point xc of Ω.
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Transmission eigenfunction localization
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Piecewise constant recovery

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, preprint)
Let Σj , j = 1, 2, . . . be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V =

∑
j VjχΣj ,

V =
∑

j V ′j χΣj for constants Vj ,V ′j ∈ C. Then

V 6= V ′ =⇒ Aui 6= A′ui ∀ui (x) = eikθ·x

if k > 0 small or |u|+ |u′| 6= 0 at each vertex.
A single incident plane wave determines V in the class of
discretized penetrable scatterers.
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Proof sketch
Integration by parts

k2
∫

Ω
(V − V ′)u′u0dx =

∫
∂Ω

(
(u − u′)∂νu0 − u0∂ν(u − u′)

)
dx

if (∆ + k2(1 + V ))u0 = 0 in Ω.

Simple case: Ω = B(0, ε) ∩ Σj with Σj = ]0, 1[n

u′(x) = u′(0) + u′r (x) u′ ∈ H2 ↪→ C 1/2

u0(x) = eρ·x (1 + ψ(x)) CGO
(V − V ′)(x) = Vj − V ′j piecewise constant

Hölder estimates give

C
∣∣∣(Vj − V ′j )u′(0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣(Vj − V ′j )u′(0)

∫
[0,∞[n

eρ·x dx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ‖ψ‖p ≤ C |ρ|−n/p−ε.
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Generalizations and limitations
I unique determination of corner location and value

I if Σj not known in advance: both (Σj)∞j=1 and V =
∑

j VjχΣj

uniquely determined by a single measurement if geometry
known to be nested

Σ1

Σ2

Σ3

I method cannot yet be shown to distinguish between

V1 V2

V3 V4

V ′
1

V ′
2 V ′

3

V ′
4
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Non-scattering
Inverse source problem

(∆ + k2)u = f , lim
r→∞

(∂r − ikr) u = 0

can one have f 6= 0 but u∞ = 0?

Recall:
u∞(θ) = ck,n f̂ (kθ).

Yes: let

f (x) =
{

1, |x | < r0

0, |x | ≥ r0

where r0 > 0. Then

u∞(θ) = ck,n f̂ (kθ) = c ′k,nJn/2(kr0) = 0

if kr0 is a zero of the Bessel function of order n/2.
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Always scattering
Smallness 1/2

A small uniform ball always scatters!

Also: any small scatterer always scatters!

Theorem
Let n ≥ 2, Rm, k ∈ R+, 0 ≤ α ≤ 1. Let Ω ⊂ Rn be a bounded
Lipschitz domain of diameter at most Rm and whose complement
is connected. Then there exists C = C(k,Rm, n) > 0 such that if
ϕ ∈ Cα(Ω) and Ω satisfy

(
diam(Ω)

)α ≤ C sup∂Ω |ϕ|
‖ϕ‖Cα(Ω)

,

then the source f = χΩϕ radiates a non-zero far-field pattern at
wavenumber k.
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Always scattering
Smallness 2/2

Proof.
Suppose (∆ + k2)u = χΩϕ and u∞ = 0. Then u|Ω{ = 0, so
u|Ω ∈ H2

0 (Ω) and (∆ + k2)u = ϕ in Ω.

Set g = ϕ− k2u. Then elliptic regularity implies g ∈ Cα(Ω) with
‖g‖Cα ≤ C(n, k,Rm) ‖ϕ‖Cα . Moreover∫

Ω
g(x)dx =

∫
Ω

1 ·∆udx = 0

because u = ∂νu = 0 in ∂Ω. Let p ∈ ∂Ω. Then

ϕ(p)m(Ω) = g(p)m(Ω) = −
∫

Ω

(
g(x)− g(p)

)
dx

Hence

|ϕ(p)|m(Ω) ≤ ‖g‖Cα

∫
Ω
|x − p|α dx ≤ ‖g‖Cα m(Ω)

(
diam(Ω)

)α
.
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Always scattering
High curvature case

Is smallness the true cause for non-scattering?

No: high curvature!

Theorem
Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. Assume that p ∈ ∂Ω is
an admissible K-curvature point. Also assume p connected to
infinity outside of Ω. Consider the source χΩϕ, ϕ ∈ Cα(Rn). If

|ϕ(p)| ≥ C(ln K )(n+3)/2K−δ

then the source scatters a non-zero far-field pattern at
wavenumber k.
Here δ > 0 depends on the geometric parameters, and C depends
on the a-priori parameters of the K-curvature point, the
wavenumber k, the upper bound for the diameter of Ω, and the
upper bound for ‖ϕ‖Cα .
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Admissible K -curvature point

h

b

Ω

0

Ωb,h
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Inverse source problem, Schiffer’s problem

(∆ + k2)u = f = χΩϕ, lim
r→∞

(∂r − ikr)u = 0

Can u∞(θ) = cf̂ (kθ) determine Ω given a fixed k?

Unique determination:
I u∞ = u′∞ =⇒ Ω = Ω′ for convex polyhedral shapes (corner

scattering),
I u∞ = u′∞ =⇒ Ω ≈ Ω′ for convex polyhedral shapes whose

corners have been smoothened to admissible K -curvature
points (high curvature scattering),

I u∞ = u′∞ =⇒ Ω ≈ Ω′ for well-separated collections of small
scatterers (small source scattering).
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Thank you for your attention!
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