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Inverse problems for partial differential equations

The Calderén problem: given an open set 2 C R” and all
(voltage, current flux) pairs (v, f) € HY/2(0Q) x H=1/2(0Q)
satisfying

V-AaVu=0 Q
u=v 0N
yo,u=1~f 00

deduce the conductivity 7y inside £2. Asked by Calderén and he
solved the linearised problem.



Inverse potential scattering
Another well-studied problem is inverse scattering: given

Cq = {(upa. Ovuppn) | (A + q)u=0,u € H'(Q)},

deduce the scattering potential g inside 2.

With potential reaching infinity: given the scattering matrix Sq(\)
for a fixed frequency or wavenumber A, determine q.

inc (X)

N

(A+ q+ )\2)(uinc + uscat) -0

Sq()) relates the behaviours of 1™ and 15t at infinity.



Some papers before Bukhgeim

» Calderén 1980 (manuscript from 60's): linearised problem
» Kohn & Vogelius 1984: piecewise analytic
» Sylvester & Uhlmann 1987: arbitrary smooth v and g in 3D
> Alessandrini 1988: logarithmic stability result
> Astala & Paivarinta 2006: arbitrary v € L>(€2) in 2D
» Bukhgeim 2008: A + g with g € W1P(Q) in 2D
» Novikov & Santacesaria 2010: stability for g € C?(Q) in 2D
» Guillarmou, Salo & Tzou 2010: uniqueness for
ge ChoR?)Nne P L°(R?) Vec>0

Also, among others: Nachman, Liu, Jerison, Kenig, ...



Our main results for low smoothness potentials

Let Q C R? be a bounded Lipschitz domain and p > 2 .

Theorem (Uniqueness in a domain)
Assume that qi, g2 € LP(Q) with Cq, = Cq,. Then q1 = qo.

Theorem (Logarithmic stability in a domain)

Let e > 0 and M < oo. Then there exists constants C, dy,0 > 0
such that

-0
d(cqucqz)>
if q1, g2 € W;(2) with norms at most M and d(Cq,,Cq,) < do.

a1 — q2lliz@) < € <|n

Theorem (Uniqueness in R?, yet to be submitted)
Assume that q1,qo € LED(R2) N ez’ [1(R2) Ve > 0 with
5¢:(0) = 54,(0). Then q1 = q>.



We will give the general idea on how
to prove these results of 2D inverse
problems.



First step in solving potential scattering inverse problems

If g1 and g, give the same measurement results, then

/(Ch — q2)urupdm =0
for all admissible u; satisfying
(A + qj)u; = 0.
Complex Geometric Optics solutions give information about
q1 — g2 if we know [(g1 — q2)urun:
u(x) = e"*(1+e(x)), peC", p-p=0,

or
u(z) = e™E(1+e(x), 9=0, 731



How to use Complex Geometric Optics solutions 3D+

Idea of Sylvester and Uhlmann (1987):
In n dimensions, n > 3, for any £ € R"” we may choose p,p’ € C"
with p-p=p'-p' =0 and

p=il§+a)+b, p =i(€—a)—b,
§a,beR", al&lbla, [b=I[¢f+]af
Not possible in 2D!

Then if |a] is large enough, CGO solutions u1(x) = (1 + e1(x))e”™
and uy(x) = (1 + e2(x))e” ¥ exist, and then

0= / (a1 — @2)(x) s (x)ua(x)dm(x)
- / (a1 — @2)(x)e¥€* (1+ O(Ja| ™)) dm(x)

Letting |a| — oo we have .Z#{q1 — q2}(2§) = 0. O



How to use Complex Geometric Optics solutions 2D
20 years later: Bukhgeim's idea for 2D: stationary phase method!

. 27— iT((zg—z Z0°—Z
lim L [ e (@=2P+@-2)(g; — g,)(z)dm(z) = (g1 — q2)(20)
T—=00 T JC

New types of CGO'’s:
u(z) = Cy/Te™ @2 (1 4 £1(2)), (A+q)u1 =0

ur(z) = Cv/Te™ @2 (1 + £5(2)), (A+q)uz=0

If sup, |e1(2)], |e2(2)| = O(T_%) then after some work

0= / (a1 — @)(2)u1(2)us(2)dm(2)

_ T eiT((zo_z)2+(7°2_f2))(q1 — q2)(z)dm(z) + small error

s

Handling the error requires tricks! Integration by parts for ex. [



How to solve for the CGO solutions in 2D?

Complex derivative operators
1 . = 1 . _
0= 5(8)(—/8),) 0= 5(8)(4—/8},) A =400
Write ®(z) = (20 — z)?. Then (defining g in the middle)
—qe’™ = A(e'™®F) = 40("™®Df) = 40 (e ™®g) = 4 "®0g

hence

*f‘ — fi'r(¢+$) )
{8 € g — (A + q)(e7®F) = 0.

0g = _%qeif(¢+$)f

Next: use the right inverses




Integral equation for CGO solutions
If u(z) = C\/7e™®(@f(z) and

Fop— %5*1(e—iT(¢+$)a—1(ei'r(¢+$)qf))
with A(e™®) = 0, then (A + q)u = 0.

Bukhgeim
P(z)=1 Vz

Imanuvilov & Yamamoto
D(z) = e=ITO+) 4 312(20)8—1(6_,'T(¢+¢))(Z)
Blasten & Yang
P(z) = e IT(®+®) 4 qb(jo)uo(z)

with ¢ € C§°(R?), ||¢ — 0~ 1q|| < e. Reasons for using ug and ¢?



Explanation 1: choice by Imanuvilov & Yamamoto

L: )

C\T ¢ +
2 ire L irea-1 —ir(e4®) 51 a1 s
CJT ¢ 470 (e (0 "q2(20) — 9 "q2)) +€n

eir(bg—l(e—ir(¢+5)(a—1q1(20) . 8—1q1)) + ei7-¢r1

= N

o

Using these will give as 7 — oo

0= /(CII — g)uiup = main term + cross terms + 0(7-*1/3)

The main term — (g1 — g2)(20). The cross terms behave as follows

2 . — __

T [0 e @  az) < 0 ) (2 — a2

2T
™

— (0 ' qa(20) = 0 " q2(20))0 (a1 — @) (20) =0 [

e_i7(¢+$)(571Q2(20) — 5716/2)8_1(671 — q2)dm



. . —1 .
Explanation 2: why 1 instead of 0 ~ (e~ 7(*+®))
_ - —iT(D4D)
Gl —ir(e4®)y L [T
7\ (e )(2) = W./C ——dm(z) 7

Theorem
Let 7 > 1 and zg € C. Then there is ug € L>°(R?) such that

5(10 — efiT(¢+$)'

Moreover ifQ € L' N LEY(R?) then

im = | Q(z)un(z)dm(z )=-0 'Q(z) in 2'(R?).

T—00 70

Proof.
If W e C°(R?), W =1 near 0, H(z) = %ZZ%ZO) then define

o =7t (e"'T(d’%)\U(-—zo))—% (e—iT((D—‘ra)H_g—l(e—ir(¢+$)

1T

oH))

L



Thank you for your attention!



