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Scattering theory

Fixed frequency scattering
\\U’ (x)
CD 1) ]

The total wave u satisfies
(A+ K1+ V))u=0,
V models a perturbation of the background,
u= u'(x) + us(x)
7 AN

incident wave scattered wave
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Mathematical scattering theory: measurements
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Measurement: A, is the far-field pattern of the scattered wave

elkIx| X ( 1 >
u®(x :—Aui<—>+(9 —
(x) |X|("—1)/2 x| |X|"/2

4)21



Inverse problems

Given the far-field map u’ + A, recover V or its support Q.
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Inverse problems

Given the far-field map u’ + A, recover V or its support Q.

Solved when
» full far-field map given for all large frequencies (Saito 84),

» full far-field map given for a single frequency
(Sylvester-Uhlmann 87 n > 3 4 Bukhgeim 07 n = 2),

» -+ countless other variations
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Inverse problems

Given the far-field map u’ + A, recover V or its support Q.

Solved when
» full far-field map given for all large frequencies (Saito 84),

» full far-field map given for a single frequency
(Sylvester-Uhlmann 87 n > 3 4 Bukhgeim 07 n = 2),

» -+ countless other variations

Focus on single measurement. A, given only for a single u'.

Schiffer’s problem: can a single measurement determine Q7
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What about in physics?

Lord Rutherford’s gold-foil experiment

Single incident wave
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Scattering theory

Rutherford experiment’s conclusions
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measurement + a-priori information = conclusion



What if the measurement gives nothing?

If A, =0 but u’ # 0 then

8/27



What if the measurement gives nothing?

If A, =0 but u’ # 0 then

there is v,w € L2(Q) \ {0}

(A+Kk)v=0 Q (1)
(A+ K1+ V)ue=0, Q (2)
u—ve H(Q). (3)

If (1)—(3) has a solution then k2 is an interior transmission
eigenvalue (ITE).
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Interior transmission eigenvalues VS sampling methods
Recall: A, =0, v #0 = Kk?>ITE

Sampling method users avoid ITE's

Are they too careful?
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Interior transmission eigenvalues VS sampling methods

Recall: A, =0, v #0 = Kk?>ITE
Sampling method users avoid ITE's

Are they too careful?

» Colton—Monk 88: supp V compact, V radial, k> ITE
— Ju' £0, A, =0
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Interior transmission eigenvalues VS sampling methods

Recall: A, =0, v #0 = Kk?>ITE
Sampling method users avoid ITE's

Are they too careful?

» Colton—Monk 88: supp V compact, V radial, k> ITE
— Ju' £0, A, =0

» Regge, Newton, Sabatier, Grinevich, Manakov, Novikov
50's — 90's: radial potentials transparent at a fixed k2 i.e.
= A, =0 vu'
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Corner scattering

Theorem (B.—Paivarinta—Sylvester CMP 14)
The potential V = x[o o[, #(0) # 0 always scatters.
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Corner scattering

Theorem (B.—Paivarinta—Sylvester CMP 14)
The potential V = x[o o[, #(0) # 0 always scatters.

For any incident wave u’ # 0 we have A, # 0.
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Some follow-up corner scattering results

» Paivarinta—Salo—Vesalainen: 2D any angle, 3D almost any
spherical cone

» Hu-Salo—Vesalainen: smoothness reduction, new arguments,
polygonal scatterer probing

» Elschner—Hu: 3D any domain having two faces meet at an
angle, and also curved edges

P Liu—Xiao: electromagnetic waves
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Some follow-up corner scattering results

» Paivarinta—Salo—Vesalainen: 2D any angle, 3D almost any
spherical cone
» Hu-Salo—Vesalainen: smoothness reduction, new arguments,
polygonal scatterer probing
» Elschner—Hu: 3D any domain having two faces meet at an
angle, and also curved edges
P Liu—Xiao: electromagnetic waves
Injectivity of support probing:
Theorem (HSV+EH)

Let P, P" be convex polyhedra and V = xpp, V = xp¢ for
admissible functions o, ’. Then

P#P = A, #A, Yu #0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
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Some follow-up corner scattering results

» Paivarinta—Salo—Vesalainen: 2D any angle, 3D almost any
spherical cone

» Hu-Salo—Vesalainen: smoothness reduction, new arguments,
polygonal scatterer probing

» Elschner—Hu: 3D any domain having two faces meet at an
angle, and also curved edges

P Liu—Xiao: electromagnetic waves

Injectivity of support probing:
Theorem (HSV+EH)

Let P, P" be convex polyhedra and V = xpp, V = xp¢ for
admissible functions o, ’. Then

P#P = A, #A, Yu #0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.

However lkehata's enclosure method gives roughly the same! 10 /27



My work while in Hong Kong



Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B., Liu, preprint)

Let u' be an incident wave and let V = xpyp, V' = xpi¢ be
admissible with |u| ,|u'| # 0 in Bg. If

1Ay = Alill 21y < &

then
du(P. P') < C(Inin A, — A |31

for some 1 > 0.
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Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B., Liu, JFA 2017)

Let u' be a normalized Herglotz wave,

W) = [ g(0)do(0), gl = 1
and let V = xpy be admissible. Then
[Auill 2(s0-1) = Cpy),v >0

where the Taylor expansion of u' at the corner x. begins with Py,
and [Pyl = Jsnr [Pn(0)] do(6).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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From apparent contradiction to inspiration

Theorem (B., Liu, + B., Li, Liu, Wang, JFA + IP 2017 +
preprint)

Let the potential V = xqp be admissible. Let v,w # 0 be
transmission eigenfunctions:

(A+K)v=0 Q
(A+KA1+V)w=0, Q
w—v € H3(Q).

Under C®-smoothness of v near x., we have
v(xe) =w(x:) =0

at every corner point x. of Q.
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Transmission eigenfunction localization

Py

w

\V]

—_

17/27



Piecewise constant recovery

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, preprint)

LetY;, j=1,2,... be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V = 3_; Vixs,,
V =3; Vixs, for constants V;, V/ € C. Then

VAV = A, #A, Viu(x)=e"

if k > 0 small or |u| + |u'| # 0 at each vertex.

A single incident plane wave determines V in the class of
discretized penetrable scatterers.
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Proof sketch
Integration by parts

k? / (V — VW updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.

19/27



Proof sketch
Integration by parts

k? / (V — V) updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.
Simple case: Q = B(0,¢) N L; with £; =10, 1["

U (x) = J'(0) + ul(x) u' € H? < C/2
up(x) = e”*(1 + ¢(x)) CGO
(V-VHx)=V,-V/ piecewise constant

19/27



Proof sketch
Integration by parts

k? / (V — V) updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.
Simple case: Q = B(0,¢) N L; with £; =10, 1["

U (x) = d'(0) + u)(x) u' € H? < C/2
up(x) = e”*(1 + ¢(x)) CGO
(V-VHx)=V,-V/ piecewise constant

Holder estimates give

c|(v~ V) @|1o " < (v - V(o) [ erax

! [0,00["

if v, < Clo|~"/P".

<Clp|™"?°
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Generalizations and limitations

» unique determination of corner location and value
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Generalizations and limitations

» unique determination of corner location and value

> if X not known in advance: both (¥;)?2; and V = }7; Vjxs,
uniquely determined by a single measurement if geometry
known to be nested

X

by}

= |
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Generalizations and limitations

» unique determination of corner location and value

> if X not known in advance: both (¥;)?2; and V = }7; Vjxs,
uniquely determined by a single measurement if geometry
known to be nested

X

by}

= |

» method cannot yet be shown to distinguish between

Vi Va

Vs Vi v/
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Non-scattering

Inverse source problem

(A + K*)u=f, Jlim (9, — ikr)u =0

can one have f # 0 but uy, = 07
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Non-scattering

Inverse source problem

(A + K*)u=f, Jlim (9, — ikr)u =0

can one have f # 0 but uy, = 07
Recall:

A

Use(0) = cnf (kD).
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Non-scattering

Inverse source problem

(A + K*)u=f, Jlim (9, — ikr)u =0

can one have f # 0 but uy, = 07
Recall:

A

Use(0) = cnf (kD).

Yes: let

F(x) = {1, x| < ro

07 ‘X‘ Z o

where rp > 0.
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Non-scattering

Inverse source problem

(A + K*)u=f, Jlim (9, — ikr)u =0

can one have f # 0 but uy, = 07
Recall:

A

Use(0) = cnf (kD).

F(x) = {1, x| < ro

07 ‘X‘ Z o

Yes: let

where ryg > 0. Then
Uoo(e) = Ck,n?(ke) = CI/<,an/2(krO) =0

if kro is a zero of the Bessel function of order n/2.
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Always scattering
Smallness 1/2

A small uniform ball always scatters!
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Always scattering
Smallness 1/2

A small uniform ball always scatters!

Also: any small scatterer always scatters!

Theorem

Let n>2, Rpk€ Ry, 0< a<1. Let QCR" be a bounded
Lipschitz domain of diameter at most R, and whose complement
is connected. Then there exists C = C(k, Ry, n) > 0 such that if

v € C*(Q) and Q satisfy

(diam(Q))* < ¢2Paal#l ¢ ,
||90Hca(§)

then the source f = xq radiates a non-zero far-field pattern at
wavenumber k.
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Always scattering
Smallness 2/2

Proof.
Suppose (A + k?)u = xq and Uy = 0. Then uge =0, so
ug € HZ(Q) and (A + k*)u = ¢ in Q.
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Always scattering
Smallness 2/2

Proof.

Suppose (A + kz)u = xop and us, = 0. Then Ut = 0, so

ugq € H3(R2) and (A + k?)u = ¢ in Q.

Set g = ¢ — k?u. Then elliptic regularity implies g € C%(Q) with
lgllca < C(n, k, Rm) |||l ca- Moreover

/g(X)dXZ/l-Audx:O
Q Q

because u = 0, u =0 in 0.
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23/27



Always scattering
Smallness 2/2

Proof.

Suppose (A + kz)u = xop and us, = 0. Then Ut = 0, so

ugq € H3(R2) and (A + k?)u = ¢ in Q.

Set g = ¢ — k?u. Then elliptic regularity implies g € C%(Q) with
lgllca < C(n, k, Rm) |||l ca- Moreover

/ g(x)dx = / 1-Audx =0

Q Q

because u =9, u=0in 02. Let p € 9Q. Then
PAPIm() = g(p)m() = — [ (g(x) — &(p))dx

Hence

(P () < llglce | Ix = pI" dx < gl m(@)(diam(@)".
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Always scattering
High curvature case

Is smallness the true cause for non-scattering?
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Always scattering
High curvature case

Is smallness the true cause for non-scattering?

No: high curvature!

Theorem

Let Q C R", n> 2, be a bounded domain. Assume that p € 082 is
an admissible K-curvature point. Also assume p connected to
infinity outside of Q). Consider the source xqp, p € C*(R"). If

lo(p)| > C(In K)(+3)/2 =0

then the source scatters a non-zero far-field pattern at
wavenumber k.

Here § > 0 depends on the geometric parameters, and C depends
on the a-priori parameters of the K-curvature point, the
wavenumber k, the upper bound for the diameter of €2, and the
upper bound for ||| ca-
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Admissible K-curvature point
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Inverse source problem, Schiffer’s problem

(A+K)u=f=xap,  lim (9 —ikr)u=0

Can us(0) = cf(kB) determine Q given a fixed k?
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Inverse source problem, Schiffer’s problem

(A+K)u=f=xap,  lim (9 —ikr)u=0
Can us(0) = cf(kB) determine Q given a fixed k?

Unique determination:

> Uy = ul, = Q = Q' for convex polyhedral shapes (corner
scattering),

> Uy = u, = Q ~ Q' for convex polyhedral shapes whose
corners have been smoothened to admissible K-curvature
points (high curvature scattering),

> Uy = ul, = Q ~ Q' for well-separated collections of small
scatterers (small source scattering).
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Thank you for your attention!

27 /27



