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Single Frequency Scattering Theory

V (x)

eikθ·x

us(x , θ)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

where V models a perturbation to the background wave speed and

u = eikθ·x

incident wave

+ us(x , θ)

scattered wave



1) Single incident plane wave

us(x , θ) = eik|x |

|x | A(x̂ , θ) + O( 1
|x |2 ),

where A(x̂ , θ) is the scattering amplitude.

2) General incident wave ui
g = superposition of plane waves eikθ·x

∫
Sn−1

u(x , θ)g(θ)dθ︸ ︷︷ ︸
ug (x)

=
∫
Sn−1

eikθ·x g(θ)dθ︸ ︷︷ ︸
ui

g (x)

+
∫
Sn−1

us(x , θ)g(θ)dθ︸ ︷︷ ︸
us

g (x)

Amplitude of general scattered wave = superposition of single
plane scattering amplitudes

Ag (θ′) =
∫
Sn−1

A(θ′, θ)g(θ)dσ(θ)



Vanishing Scattering Amplitude?
Question: Can there be g ∈ L2(Sn−1), g 6= 0 such that Ag ≡ 0?

Consequence:

Rellich’s theorem =⇒ us
g ≡ 0 Rn \ supp V .

Recall that

ug =: w
= ui

g =: v
+ us

g
compact support

Now v and w satisfy(
∆ + k2(1 + V )

)
w = 0 in Ω(

∆ + k2)v = 0 in Ω
w = v on ∂Ω

∂
∂νw = ∂

∂ν v on ∂Ω

This is called the Interior Transmission Problem (ITP). If there is
such w , v 6= 0 then k is an interior transmission eigenvalue (ITE).



Interior Transmission Problem
Why interesting:

I generalized eigenvalue problem (analytic Fredholm theory)
I correspond to resonant frequencies of impenetrable scatterers
I ITE’s show up in the far field data
I can V be determined from ITP spectrum?

Some history:
I 86’, 88’ Kirsch, Colton–Monk: ITP posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE
I 91’–08’ nothing. . .
I 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest



Interior Transmission Problem
What kind of things are known nowadays:

I ITE’s generally form an infinite discrete set
I generalized eigenfunctions form a complete set
I Weil laws for the ITE counting function
I numerical algorithms
I ITP solved in many situations: rough potential, rough domain,

higher order PDE’s, Maxwell, elasticity, unbounded domain. . .
Some people publishing in the field: Kirsch, Colton, Monk,
Päivärinta, Cakoni, Sylvester, Haddar, Robbiano, Lakshtanov,
Vainberg, Bonnet-Ben Dhia, Chesnel, Delbary, Hu, Salo,
Vesalainen, Selgas, Leung, Gintides, Pallikarakis, Sun, Xu, Harris,
Chen, Meng, . . . . . . . . .
Survey (2013): Cakoni, Haddar: Transmission eigenvalues in
inverse scattering theory, in Inverse Problems and Applications:
Inside Out II, 529–578.



Non Scattering Energies

Definition
λ > 0 is a non-scattering energy (NSE) if the scattering amplitude
is not injective, i.e. there is an incident wave

ug (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), k =
√
λ,

such that the scattered wave us has zero far field, so Ag ≡ 0.

Remark
Non-scattering energies are transmission eigenvalues.

Theorem
{Transmission eigenvalues} 6= {non-scattering energies}
(B.–Päivärinta–Sylvester 2014, Päivärinta–Salo–Vesalainen
submitted 2014)



Results for non scattering energies

Theorem (B.–Päivärinta–Sylvester, 2014)
Let V = χCϕ, C = ]0,∞[n and ϕ with bounded support and
ϕ(0) 6= 0. Then V scatters all incident waves at all energies.

Theorem (Päivärinta–Salo–Vesalainen, submitted 2014)
V = χCϕ, C ⊂ Rn, n ∈ {2, 3} a circular cone with angle < π
avoiding a discrete set of a-priori forbidden angles. Then no NSE’s.

Theorem (Bonnet-Ben Dhia–Chesnel–Nazarov, 2015)
Non-scattering energies when far field known in a given finite set
of directions. Then NSE form a discrete set. Given energy λ and
domain Ω construct V in Ω such that λ is a NSE.

Theorem (Hu–Salo–Vesalainen, submitted 2015)
Single incident wave determines shape and location of polygonal
penetrable scatterer in R2. Same for rectangular scatterers in R3.



Results used in the proof of our theorem

Proposition
If v is a non-scattering incident wave, then∫

Vvwdx = 0

for all w ∈ L1
loc ,

(
∆ + k2(1 + V )

)
w = 0.

Proposition
Let H be a homogeneous harmonic polynomial. If∫

x≥0 eρ·x H(x)dx = 0 for all ρ ∈ Cn, ρ · ρ = 0, <ρ < 0, then H ≡ 0.

Proposition
For such ρ with |=ρ| > r0 there is w ∈ Lp

loc , 2 ≤ p <∞ such that

w(x) = eρ·x
(
1 + ψ(x)

)
, ‖ψ‖Lp(Ω) ≤ CΩ |=ρ|−1 .



Proof overview 1/2
∫

C
ϕvwdx = 0

Assume for simplicity that ϕ ≡ 1 in its support which is in ]0, 1[n.
Let w be a CGO solution. By the proposition on the previous slide∫

]0,1[n
eρ·x

(
1 + ψ(x)

)
v(x)dx = 0.

Since
∫
|x |>1 ex ·ρ(1 + ψ)v dx decays exponentially as |ρ| → ∞, we

get ∣∣∣∣∫
x≥0

ex ·ρ(1 + ψ(x)
)
v(x)dx

∣∣∣∣ ≤ exp
(
− c |ρ|

)
.

Lemma
Let (∆ + λ)v = 0 in Rn. Then the principal term PN in the
Taylor-expansion of v is a homogeneous harmonic polynomial or
order N.



Proof overview 2/2
Write v = PN + vN+1, where vN+1 is of order N + 1. Then∣∣∣∣∫

x≥0
eρ·x

(
1 + ψ(x)

)
vN+1(x)dx

∣∣∣∣ ≤ C |ρ|−N−n−1

and ∣∣∣∣∫
x≥0

eρ·xψ(x)PN(x)dx
∣∣∣∣ ≤ C |ρ|−N−n+n/p ‖ψ‖p .

Using ‖ψ‖p ≤ C |ρ|−1 we end up with∣∣∣∣∫
x≥0

eρ·x PN(x)dx
∣∣∣∣ ≤ C |ρ|−N−n−1+n/p

as |ρ| → ∞. LHS ≈ C |ρ|−N−n. Hence∫
x≥0

e
ρ
|ρ| ·x PN(x)dx ≡ 0.

so PN ≡ 0.



Problem 1: CGO with fast error decay
Earlier estimates for the Faddeev Green’s function 1/2

Definition
Let

Gρf := F−1
(

−f̂
|ξ|2 − 2iρ · ξ

)
, ρ · ρ = 0

Theorem (Well known Agmon estimate)

‖Gρf ‖L2
δ+1(Rn) ≤

C
|ρ|
‖f ‖L2

δ
(Rn) , −1 < δ < 0

It implies in that
‖ψ‖L2(Ω) ≤ C |ρ|−1 .

But then we needed to have n/2− 1 < 0 for the proof !!



Problem 1: CGO with good error decay
Earlier estimates for the Faddeev Green’s function 2/2

The best sharp result for Lp(Rn) is

Theorem (Kenig–Ruiz–Sogge)
If

1
p + 1

q = 1 and 2
n + 1 ≤

1
p −

1
q ≤

2
n ,

then Gρ : Lp(Rn)→ Lq(Rn) with

‖Gρf ‖q ≤ C |ρ|n( 1
p−

1
q )−2 ‖f ‖p .

This is not enough decay for the proof!

And this result is sharp. Cannot get better in Lp(Rn)!



Problem 1: CGO with good error decay
Why not prove the estimate on the Fourier side?

Theorem (B.–Päivärinta–Sylvester)
The following Agmon-Hörmander style estimate holds:

‖FGρf ‖B−1
p,∞
≤ C |ρ|−1 ‖F f ‖B1

p,1
, 1 ≤ p ≤ ∞

Corollary
There is a CGO solution eρ·x (1 + ψ) with ‖ψ‖p ≤ C |ρ|−1 locally
for 2 ≤ p <∞.

Proof.
The error term satisfies (∆ + 2ρ · ∇)ψ = V + Vψ so

Fψ = FGρV + FGρVψ.

Also V =
∏n

j=1 H(xj)ϕ with ϕ smooth enough. So FVψ ∈ B1
q,1 if

Fψ ∈ B−1
q,∞. Finally, F−1B−1

q,∞ ↪→ Lp
loc if p−1 + q−1 = 1.



Problem 1: CGO with good error decay
Proof of the new estimate

Lemma
Let M = {x | g(x) = 0} be a codimension k ≥ 2 compact
manifold and |∇g | ≥ 1 on M . Then∥∥∥∥ 1

g ∗ χε
∥∥∥∥
∞
≤ Cε−1

for 1 > ε > 0, χε(x) = ε−nχ(x/ε).
This general result implies a uniform bound for the
Fourier-transforms of the cut-offs of the Faddeev kernel:

Corollary ∥∥∥∥∥ 1
− |ξ|2 + 2iρ · ξ

∗ χε

∥∥∥∥∥
∞
≤ C
|ρ|
ε−1



Problem 2: Laplace transform vanishing on submanifold
Proposition
Let H : Cn → C be a homogeneous harmonic polynomial. If∫

x≥0
eρ·x H(x)dx = 0

for all ρ ∈ Cn, ρ · ρ = 0, <ρ < 0, then H ≡ 0.

A direct integration gives∫
x≥0

ex ·ρH(x)dx = P( 1
ρ)

(1
ρ

)
j

:= 1
ρj
.

Integration by parts (using ∆H = 0) gives∫
x≥0

ex ·ρH(x)dx = 1
ρ · ρ

Q( 1
ρ)

where P,Q are homogeneous polynomials.



Problem 2: Laplace transform vanishing on submanifold
Algebraic geometry

Write zj = 1/ρj . Then (if n = 3)

ρ · ρ = 1
z ·

1
z = z2

1 z2
2 + z2

2 z2
3 + z2

3 z2
1

z2
1 z2

2 z2
3

.

1/(ρ · ρ)Q(1/ρ) = 0 on ρ · ρ = 0 and Hilbert’s Nullstellensatz
imply that

Q(z) = C(z)(z2
1 z2

2 + z2
2 z2

3 + z2
3 z2

1 )2



Problem 2: Laplace transform vanishing on submanifold
Polynomial algebra

Integration by parts =⇒ terms of Q do not have z2
1 z2

2 z2
3 as factor.

Lemma
Let Q be a homogeneous polynomial without terms having z2

1 z2
2 z2

3
as a factor. Then Q does not have F 2 = (z2

1 z2
2 + z2

2 z2
3 + z2

3 z2
1 )2 as

a factor unless Q ≡ 0.

Proof.
Expand Q = CF 2, equate sum of terms having z2

1 z2
2 z2

3 as zero.
Gives a system of linear equations proving C ≡ 0.



Problem 2: Laplace transform vanishing on submanifold
Solving the system of equations 1/3

I C homogeneous
I cm,n,l its coefficients. Represented as nodes on the left.
I A single equation is represented by sliding the right triangle

onto the left one, both sharing ≥ 3 common nodes.

m = 0

l =
0n

=
0

cm,n,l

A

b

C

c

a B

A + B + C + 2a + 2b + 2d = 0



Problem 2: Laplace transform vanishing on submanifold
Solving the system of equations 2/3

I One of the equations shows that the top node cm,0,0 = 0.
I The next line a = cm−1,0,1, b = cm−1,1,0:

0

a b

0

a b

2a + b = 0
a + 2b = 0

}
⇒ a = b = 0



Problem 2: Laplace transform vanishing on submanifold
Solving the system of equations 3/3

I Induction: Let the leftmost node be α.
I Then the next one must be −2α.
I . . .

= 0

α −2α
±(k − 1)α

∓kα
±(k + 1)α

I In the end

∓kα± 2(k + 1)α = 0 =⇒ α = 0.

I By induction cm,n,l = 0 ∀m, n, l .



Q.E.D.

Theorem (B.–Päivärinta–Sylvester 2014)
Let V = χCϕ, C = ]0,∞[n and ϕ with bounded support and
ϕ(0) 6= 0. Then V scatters all incident waves at all energies.



From high-school algebra to non-trivial inverse scattering
Conjecture
Let P : Cn → C be a homogeneous second degree polynomial. Let
H be a homogeneous polynomial satisfying P(∇)H = 0. If∫

x≥0
eρ·x H(x)dx = 0

for P(ρ) = 0, <ρ < 0 then H ≡ 0.

Corollary
Polygonal penetrable scatterers always scatter and their shape
can be identified from a single measurement.

Proof.
2D okay: Hu–Salo–Vesalainen, Shape identification in inverse
medium scattering problems with a single far-field pattern.
Impenetrable: Liu–Petrini–Rondi–Xiao, Stable
determination of sound-hard polyhedral scatterers by a minimal
number of scattering measurements.



Non-rectangular corners?

Theorem (Päivärinta–Salo–Vesalainen, 2014)

I C ⊂ R2 strictly convex cone with vertex 0̄,
I ϕ : R2 → R superexponentially decaying, ϕ(0̄) 6= 0,
I ϕ ∈ C s(R2) for some s > 0.

Then V = χCϕ has no non-scattering energies.

Theorem (Päivärinta–Salo–Vesalainen, 2014)

I C ⊂ R3 strictly convex circular cone with vertex 0̄,
I opening angle of C /∈ E, where E a-priori given and countable,
I ϕ : R3 → R superexponentially decaying, ϕ(0̄) 6= 0,
I ϕ ∈ C s(R3) for some s > 1

4 .

Then V = χCϕ has no non-scattering energies.



Proof ideas

I Kenig-Ruiz-Sogge type estimate for CGO construction: If

1
p + 1

q = 1 and 2
n + 1 ≤

1
p −

1
q ≤

2
n ,

then Gρ : Hs,p(Rn)→ Hs,q(Rn) with

‖Gρf ‖s,q ≤ C |ρ|n( 1
p−

1
q )−2 ‖f ‖s,p .

I polar coordinates + spherical harmonics decomposition of H
to show that H ≡ 0 if Laplace transform vanishes:∫

C∩Sn−1

∫ ∞
0

eρ·θr rN+n−1H(θ)drdθ = 0



Work almost submitted

Theorem (B.–Pohjola–Vesalainen)
In the hyperbolic space Hn hyperbolic rectangular (n ∈ N) or
spherical (n ∈ {2, 3}) penetrable cones always scatter.



Open problem

Characterise all domains/potentials that have non-scattering
energies.

Conjecture
Only radially symmetric potentials have non-scattering energies.



Thank you for your attention


