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Cq — q uniqueness and stability for non-smooth g in 2D

Join work with Oleg Imanuvilov and Masahiro Yamamoto.

Cq={(ygq,Ovugq) | ue W3(Q), (A + q)u = 0}

Let Q C R? be a bounded Lipschitz domain and p > 2. The
following was proven by Bukhgeim (2008) when q € Wpl(Q).

Theorem (Uniqueness in a domain)
Assume that g1, q> € LP(Q) with Cq, = Cq,. Then q1 = qo.

Theorem (Logarithmic stability in a domain)

Let e > 0 and M < oo. Then there exists constants C, dgy,0 > 0
such that

-
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lar — @2l o) < € (I)
H&) d(Cqy.Cap)

ifqgi,q € W;(Q) with norms at most M and d(Cq,,Cq,) < do.



Cq — q uniqueness and stability for non-smooth g in 2D
Proof idea slide 1/2

Set ®(z) = (z — z)? for z, 29 € C.
If u(z) = 7®@f(z) and
f=i— %5*1(e—iT(¢+$)8—1(eiT(<b+$)qf))
with A(e™®) = 0, then (A + q)u = 0.
Bukhgeim
P(z)=1 Vz
Imanuvilov & Yamamoto According to Uhlmann, these were

already defined in http://arxiv.org/abs/1010.5791 by
Imanuvilov, Yamamoto & Uhlmann !

_ -1 _
W(z) = e iT(®+®) | 9 Z(ZO)a—l(e_ir(¢+¢))(z)



Cq — q uniqueness and stability for non-smooth g in 2D

Proof idea slide 2/2
Bukhgeim solutions
U =™ %eiﬂbg_l(e—iT(¢+6)a—1(eiT(¢+$)q1)) +e™n
ird leifr$a—1(e—ir(¢+$)5_1(e—i7(¢+$) Clz)) + ei¢6r2

Imanuvilov & Yamamoto solutions

. = 1 . . —. .
= e—17¢ - Zelrd)a 1(e—lr(<b+¢')(a—1q1 o 8_1671(20))) + em-(brl

. 1 . = o . -
Uy = efm'd) _ Zel7'<1>871(efm'(qi'qul))(a 1q2 _3 1q2(20))) + equ)rg

The second set of solutions give a fast decay for cross-terms in

0= / (g1 — g2)urup  without the need to integrate by parts.
Q



Fixed energy inverse scattering for non-smooth g in R?

Joint work with Yang Yang.
Reduce smoothness assumptions of potential in Guillarmou, Salo
and Tzou (2010).

Theorem (Uniqueness in R? given Alessandrini identity)

Assume that q1, g € LZD(R?) N LY(R?). Then for any
¢ € C°(R?) and e > 0 we have

(o= el < timsup |{ [ (o — ae)unintm, )] + & ey
T—00 R2

if uj € L,loc are the Imanuvilov & Yamamoto - type CGO solutions.

NOTE: The Alessandrini identity for CGO-solutions requires that
g1 and g have super-exponential decay at infinity.



Fixed energy inverse scattering for non-smooth g in R?

Difficulties arising from unbounded domain 1/2
First difficulty: Do the Imanuvilov & Yamamoto CGOs exist in the
whole R?? -Yes, they do!
Set u(z) = (@ f(z) with

f=q— %5_1(e_i7(¢+6)8_1(ei7(¢+6)qf)), 70l

Choice by B. & Yang

u(z) = @ 4 ARy

with ¢ € C§°(R2), ||¢ — 0~ 1q|| < € and Dup = e~ /T(®+®),
Why use ug and ¢? Compare Imanuvilov & Yamamoto:

. - 9! _ ) _
W(z) = e~ IT(O+®) 4 Z(Zo)a L im(@+9)) ()



Fixed energy inverse scattering for non-smooth g in R?
Difficulties arising from unbounded domain 2/2
Second difficulty: Stationary phase arguments not so trivial.
Solved by proving convergence in Z'(R?):

lim 2—TCQ(z)uQ(z)dm(z) = —5_10(20) in 2'(R?).

T—00 Jr2 T

Key to solution: If W € C5°(R?) then the map

o [ ZeHTOON(z - )p(2)dm(z), (2) = (z - 2)
R2 T

extends to a map Ey : 2'(R?) — 2'(R?) and moreover
lim Eyf =W(0)f in 7'(R?).

If f € L2(R?) then the same is true for L2(R?) instead of 2'(R?).

Interesting question: Since we use convergence in 9’(R2) at some
point in the proof, is it possible to prove stability?



New estimates for direct scattering theory

Background for interest

Join work with John Sylvester.

>

So far my research always took [(g1 — g2)uiup =0 as a
starting point.

This follows easily in a bounded domain from the definition of
equivalent Cauchy data.

What about for an unbounded domain? Well-known for
A + k2, but | wanted to understand more. Leads to a quest
for understanding scattering theory more deeply.

Visited John Sylvester at the UW in spring 2014.

His 2013 Delaware presentation: new estimates for
(A + k?)~1in 1D and 2D.

That is the first step in scattering theory a la Hérmander.

Bonus: a new CGO-estimate.



Old well-known estimates
Let (A + k?)u = f. then

» Agmon (1975), § > 3

|1+ %) ~/2u

< F @ iy

L2(Rr L2(Rn)

» Agmon-Hérmander (1976) A; = {271 < |x| < 271},
Ao = {|x| < 2}.

gp@|MmA Z¢®me
J1Z

> Kenig-Ruiz-Sogge (1987) &~ + - = 1, <l_1lc

3N

1 _ 1
n+1 q1 q2

1_1y_»o
)l gy < CK™ @272 |IF | oy )

All of the above not satisfactory from a physical point of view:
dilation, rotation, translation, behaviour w.r.t wavelength. ..



New estimates for direct scattering theory

Theorem (J. Sylvester 2013 or earlier)

If supp f C Dy is bounded then (A + k?)u = f has a scattering
solution u. It satisfies

diam(D,)/diam(D
ol 2oy < PV

for any bounded D;.

Corollary

Generalized Agmon-Hérmander estimates:
f =31 suppf; C Aj, (not necessarily annuli!)
= > uj, (A+ K2)u; = f;,

diam(Dz) ||u||Lz(Dz)_k S fdiam(A) 1] 2¢s



New estimates for direct scattering theory
Idea of the proof in 1D

o utaoing 1 1
{oouteoms = oy (g—(k—io)_§+(k—i0))

F{ +V2ri H(£x) e} (€) = 5_12, if signlmz = +1.

Result

iefik\x|

2k

I H " 1
u “outgoing” = f * lull oo < ok 1] 2



New estimates for direct scattering theory
Idea of the proof in 2D 1/3

(D2 + D)+ K)u=f= (- -G+ K)u="F

f —f

“G-GeK (51-@) <§1+\/k27—§§>
o “outgoing” := —f ( 1 - 1 )
2 /K2 -G \&1— /K2~ &+ /K-8

where |/ k2 — ¢2 chosen to have negative imaginary part! (or —i0)

U=




New estimates for direct scattering theory
Idea of the proof in 2D 2/3

Result If f = 0 on |k? — €3] < 62 then
e~ iV Kk =&lxl

2k -

1 o0
S;JIPHUHB(XZ) < 27;/_@ 11 12 () A1

Fou = yflf *x

Lemma If v € St and myf = F1{y(& - ¢- vv)f(€)} for some
P € C§o(vt) then

| Imiflg da < € [ 1Flagg d.



New estimates for direct scattering theory
Idea of the proof in 2D 3/3

Picture courtesy of J. Sylvester

Corollary If supp f C Qs, and d(£2s) < oo then

C
lull 2,y = 5/ d(Qw)d(Qs) [Ifll 2(q,)

for any bounded Q,,.
For which PDEs will this work?



Simple scattering theory for A + k2

Review: time-harmonic plane-wave scattering
Let Cp be the background wave

speed. Model the scatterer elk0-x

with a function V/, where \\\
Clx)? \
1+V=
+ 2 S I /
is the relative speed of wave //US(X»Q)

propagation at the fixed fre-
quency.

The total wave uy satisfies
(A4 K3 (14 V))up = 0,
where
up = eik6~x + u;(x)
/ N

free wave scattered wave



New estimates for direct scattering theory

The Hérmander viewpoint

Goal We will show that Sylvester's method and estimate extends
to a large class of PDEs.

Solving Po(D)u = f for all solutions u is the first step to
understanding the scattering theory by Agmon and Hoérmander.
Their theory works for a large class of differential operators

P(D) = Po(D) + V(x,D), D=—iV

where the polynomial P is real-valued, non-singular and simply
characteristic. The potential V can be any “short-range
perturbation”, e.g. a differential operator.



New estimates for direct scattering theory

Steps for Agmon-Hormander scattering

study (Po(D) — A\)~!, Py constant coefficient real polynomial
classify all solutions to (Po(D) — A)u=f

study spectrum of Py(D) — A + V(x, D)

use Fredholm alternative to infer about

(Po(D) = A+ V(x, D))"

distorted Fourier transform

6. classify all solutions to (Po(D) — A+ V(x,D))u =0

B

o

NOTE: we will absorb A into Py in the following slides since it can
be kept a constant in steps 1. and 2.



New estimates for direct scattering theory
Idea of general PDE proof in 1D

Po(D)u = f = Po(¢)ir = f

b=— = fz Py non-singular, so simple roots!
==&
J

1

——  R; one of p.v., +i0 or —i0
E-¢ 7

U “regularized” := ?ZCJ'RJ'
J

g1 . L
HJ {ij—&}

Result If & regularized like above then

< C no matter which R;
Loo

[ull oo < C Il 2



New estimates for direct scattering theory
Idea of general PDE proof in 2D 1/3

f = 0 on the lines tangent to Py 1(0)!
Note: nontrivial! some 7; may be real/complex depending on &'

) 1
i “regularized” == 73" (¢ R; e ——k
7 J

Note: will the choice of R; ¢ depend on £'? Can it? Anyway

z—1 . #
Z {Rj’ng—Tj(f/)}

< C no matter which R; ¢
L>(vR)

sup
¢ ly




New estimates for direct scattering theory
Idea of general PDE proof in 2D 2/3

Result If f = 0 whenever 7 — 71 + ¢ is tangent to Py(0) then
sup Ul 1y < € [ Ifllagy dovm
vR — 00

Lemma If v € St and myf = F1{y(£ — ¢ vv)f(€)} for some
P € C§°(vh) then

/ Imyfll 21y dVR < c/ £l 2,2y IR,

Corollary If the partition of unity succeeds and supp f C Qg with
d(€s) < oo then there is u s.t. Po(D)u = f. Moreover

lull 2,y < €/ d(w)d(Qs) (1]l 2(q,)

for any bounded Q,,.



New estimates for direct scattering theory
Idea of general PDE proof in 2D 3/3
When will the partition of unity succeed?
Difficulties

» Py of arbitrarily high degree
» geometric tangent VS algebraic tangent (R” VS C")
Under what assumptions can we do it currently
» Py : C%2 — C (coefficients may be complex)
» Py uniformly non-singular (Po(§) = 0= |[VPy(&)| > go > 0)
» When [{| — oo along Py(§) = 0 we have

£ VR(E)

——= —0 (no twirling to infinity)

le[ [V Po()]

» For all ¢ there is v € St such that the polynomial
T Po(Tv + &)

has simple roots and is of same degree as Py



Inverse problem for Agmon-Hoérmander scattering

Setting: If Py is simply characteristic, V is its short-range
perturbation and \ € R avoids a discrete set, then the solutions to

(Po(D) — A — V(x,D))u = 0

can be split into free wave + scattered wave. Moreover the
scattering matrix X is well defined.
Inverse problem: does ¥ ) determine Py and V7

> Is there any hope? What kind of counterexamples?

» Does it at least determine the degree of Py?

» Can the problem be solved if we know X for many A7



New estimates for direct scattering theory
BONUS: new CGO-estimate

Theorem
There is C > 0 such that if p € C", p-p =0 then

j(a—2- V)*lf)\mmp@(ml))

n—1)(2
< Clp/" V" ||fHL1 (Rp, L1 (Rp))

when % — % < =7 and p < p1. No need for i + é =11
Corollary
If supp f C Qs, q1
p— . _1
@ =209

n— 1
< Cd(Qu) 2 d(Q)1 % oD@ T gy g,



New estimates for direct scattering theory
New CGO-estimate proof

» p=R+il, R IeR" |RI=]|l, LR
» R=sv,s>0, veS"1
> E=Tv+¢

Then we can split

1 -1

— P —2ip-¢  (rti(s+ &~ )T +i(s—I¢ —1]))

The operator

Ag =71 {pVT—i—{/éb(f’)}

maps

< C(inf b)*(™PP2) | g

||AgHLoo (Rp, @(% 1) Lo (Rp, LP1(§Rpi))

HAg”/_oo(ng p(Rpt)) = <C ||g||L1(§Rp Lp(RpL))



Thank you for your attention!



