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Scattering theory

Ω

ui(x)

us(x)

The total wave u satisfies

(∆ + k2)u = 0, Rn \ Ω,
& effect on u from the object Ω

The incident wave ui has

(∆ + k2)ui = 0, Rn.

The scattered wave us satisfies a
radiation condition at infinity.

u(x) = ui(x)

incident wave

+ us(x)

scattered wave
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Inverse scattering in real life

Example: Lord Rutherford’s gold-foil experiment

Single incident wave
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Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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Waves in scattering theory

=

+

u = ui + us
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Inverse scattering: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) =
e ik|x |

|x |(n−1)/2 Aui (x̂) +O
(

1
|x |n/2

)
, x̂ =

x

|x |
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Different inverse scattering problems
Given the far-field map ui 7→ Aui , recover the scattering
potential V , its support Ω or an impenetrable obstacle Ω.

Solved when
• far-field map given for all waves of a single frequency:

◦ Schiffer 1967: Dirichlet obstacle
◦ Sylvester–Uhlmann 1987: 3D Calderón problem
◦ Nachman, Novikov both in 1988: 3D scattering
◦ Bukhgeim 2007: 2D scattering

• + countless variations

My focus is on single measurement: Aui given for only one ui .

Schiffer’s problem
Can a single measurement determine Ω?
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Single measurement inverse obstacle scattering
Terminology from acoustics:

– sound-soft ⇔ u = 0 on ∂Ω

– sound-hard ⇔ ∂νu = 0 on ∂Ω

Past results with N different incident waves:

• N = ∞ sound-soft obstacle (Schiffer 1987)

• N < ∞ obstacle, sound-soft (Colton–Sleeman 1983),
sound-hard (Kirsch–Kress 1993)

• Alves–Ha-Duong 1997: N = ∞ for scattering surface, N = 1
plane wave for sound-soft flat screen

• Admissible / polyhedral obstacles and screens: Rondi 2003
N < ∞, Cheng–Yamamoto 2003 N = 1, 2, Alessandrini–Rondi
2005 sound-soft N = 1, Liu–Zou 2006 sound-hard N = n,
Rondi 2008 and Liu–Petrini–Rondi–Xiao 2016 stability, . . .

9 / 22



Single measurement vs infinitely many

With one measure, you only have one solution to your PDE to
work with!

=⇒ you need a deeper understanding of the direct problem!

=⇒ you need to analyse how solutions behave near boundaries
or other points of interest!

10 / 22



Sections

Shape determination in inverse problems

Flat screen determination

Proofs

11 / 22



Scattering from a flat screen

Definition
Ω ⊂ R3 is a flat screen of Ω = Ω0 × {0} for some simply
connected bounded domain Ω0 ⊂ R2 whose boundary is
smooth.

Definition
Let ui : R3 → C satisfy (∆ + k2)ui = 0 in R3 and let Ω be a
flat screen. u = ui + us ∈ H1

loc(R3 \Ω) solves the direct screen
scattering problem if

(∆ + k2)us = 0, R3 \ Ω,
ui(x) + us(x) = 0, x ∈ Ω,

r(∂r − ik)us = 0, r → ∞,

where r = |x | and the limit is uniform in all directions x̂ ∈ S2.
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Inverse problem statement

Definition
Let us satisfy the Sommerfeld radiation condition and
(∆+ k2)us = 0 outside a ball B ⊂ R3. We say u∞

s : S2 → C is
the far-field pattern of us , if

us(x) =
e ik|x |

|x |

(
u∞
s (x̂) +O

(
1
|x |

))
uniformly over x̂ as |x | → ∞.

Inverse problem
Given u∞

s (x̂) for all x̂ ∈ S3 and one k > 0, can we determine
the shape Ω0 of a flat screen Ω = Ω0 × {0}?
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Our results (Blåsten, Päivärinta, Sadique 2020)
Theorem
Ω ⊂ R3 a flat screen and us satisfies the direct problem. Then

u∞
s (x̂) =

1
4π

∫
R2×{0}

e−ikx̂ ·y (∂3u
+
s − ∂3u

−
s )(y) dy

for x̂ ∈ S2. f ± are the one-sided limits to R2 × {0}.

Theorem
Ω, Ω̃ flat screens, k > 0, ui an incident wave. Let us , ũs satisfy
the direct problem for Ω, Ω̃, respectively. Assume u∞

s = ũ∞
s .

• If ui(x1, x2, x3) ̸= −ui(x1, x2,−x3) at some point, then
Ω = Ω̃.

• If ui(x1, x2, x3) = −ui(x1, x2,−x3) everywhere, then
u∞
s = ũ∞

s = 0 for all Ω, Ω̃.
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Comparison to past result

Theorem (Alves, Ha-Duong 1997: by plane waves)
Consider the screens Ω1,Ω2 in the plane {x3 = 0} where we
have Dirichlet boundary conditions and only one incident plane
wave with direction d . If the associated far fields F1,F2 (of the
scattered waves) are equal, i.e.

F1(x̂) = F2(x̂) ∀x̂ ∈ S2

we have Ω1 = Ω2.

In our result, we can have any incident wave. Even “bad” ones
that vanish one Ω.
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Far-field representation, part 1/2

Φ(x , y) =
exp(ik |x − y |)

4π|x − y |
, (∆x + k2)Φ = δy (x)

For x ∈ D with Ω ⊂ ∂D, D ⊂ R2 × R+:

us(x) =−
∫
D
Φ(x , y)(∆ + k2)us(y)dy

+

∫
∂D

(
Φ(x , y)∂νus(y)− us(y)∂νΦ(x , y)

)
ds(y)

0 =−
∫
B\D

Φ(x , y)(∆ + k2)us(y)dy

+

∫
∂(B\D)

(
Φ(x , y)∂νus(y)− us(y)∂νΦ(x , y)

)
ds(y)

Split ∂(B \ D), let radius of B grow, use Sommerfeld radiation. . .

us(x) =

∫
R2×{0}

Φ(x , y)(∂3u
+
s − ∂3u

−
s )(y) dy
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Far-field representation, part 2/2
For y in a compact set K and |α| ≤ 1

lim
r→∞

sup
|x |=r

sup
y∈K

|x |

∣∣∣∣∣∂α
y

(
e ik|x−y |

|x − y |
− e ik|x |

|x |
e−ikx̂ ·y

)∣∣∣∣∣ = 0

Definition of u∞s , namely us(x) = e ik|x ||x |−1(u∞s (x̂) +O(|x |−1)),
gives

u∞s (x̂) = lim
|x |→∞

|x |
e ik|x |

us(|x |x̂)

= lim
|x |→∞

|x |
e ik|x |

∫
R2×{0}

exp(ik |x − y |)
4π|x − y |

(∂3u
+
s − ∂3u

−
s )(y) dy

=
1
4π

∫
R2×{0}

e−ikx̂ ·y (∂3u
+
s − ∂3u

−
s )(y) dy ,

which is our first theorem. It was ok since ∂3u
+
s − ∂3u

−
s ∈ H−1/2,

and the difference of the exponentials had |α| ≤ 1 above. ■
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Solving the inverse problem, part 1
Setting

u∞
s (x̂) =

1
4π

∫
R2×{0}

e−ikx̂ ·yρ(y1, y2) dy , x̂ ∈ S2

implies that ρ = ρ(x1, x2) can be determined from u∞
s :

u∞
s (x̂) =

1
2
Fρ(kx̂1, kx̂2)

so

Fρ(ξ1, ξ2) = 2u∞
s

(
ξ1/k , ξ2/k ,

√
1 − (ξ1/k)2 − (ξ2/k)2

)
and then invert the Fourier transform.

This gives us ∂3u
+
s − ∂3u

−
s from u∞

s . We need to then
determine Ω.
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Solving the inverse problem, part 2

Define
ρ(x1, x2) = (∂3u

+
s − ∂3u

−
s )(x1, x2, 0).

It is a H−1/2(Ω0)-distribution. We will show that Ω0 = supp ρ.

supp ρ ⊂ Ω0 because of elliptic regularity of us outside of Ω.

If Ω0 ̸⊂ supp ρ then ∃c , r such that B(c , r) ⊂ Ω0 \ supp ρ.
Let’s investigate the behaviour of us and ui in the tube
B(c , r)× R (on the whiteboard).

. . . . . . . . .
Then ui(x1, x2, x3) = −ui(x1, x2,−x3) for all x ∈ R3. ■
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