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1. Introduction

In this paper, our aim is to give more detailed proofs of our earlier results
in [2], in particular to correct a missing smoothness assumption in Lemma 2.4
and show that it follows from our theorems’ assumptions. Let λ, µ be the
Lamé constants satisfying the following strong convexity condition

µ > 0 and nλ+ 2µ > 0 (1.1)

in dimensions n = 2, 3. Let f ∈ Cn be an external force, which is assumed
to be compactly supported. More specifically we are interested in forces
applied to a subregion, which are denoted by the functions f = χΩϕ, where
χΩ is the characteristic function of a bounded Lipschitz domain Ω in Rn and
ϕ ∈ L∞(Rn;Cn). Given an angular frequency ω > 0, let u(x) = (u`(x))n`=1
be the displacement vector field. Then the time-harmonic elastic system is

λ∆u+ (λ+ µ)∇∇ · u+ ω2u = f in Rn. (1.2)

Via the well-known Helmholtz decomposition in Rn\Ω, one can see that
the scattered field can be decomposed as

u = up + us in Rn \ Ω,

with

up = − 1

ω2
p

∇(∇ · u) and us =
1

ω2
s

rot(rotu),

1
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where ωp and ωs are the compressional and shear wave numbers, respectively,
which are given by

ωp =
ω√

λ+ 2µ
and ωs =

ω
√
µ
.

Above rot = ∇⊥ represents π
2 clockwise rotation of the gradient when n = 2,

and rot = ∇× stands for the curl operator when n = 3. The vector fields up
and us are called the compressional and shear parts of the scattered vector
field u, respectively. In addition, recall that f = 0 in Rn \ Ω. Then up and
us satisfy the Helmholtz equation

(∆ + ω2
p)up = 0 and rotup = 0 in Rn\Ω,

(∆ + ω2
s)us = 0 and ∇ · us = 0 in Rn\Ω.

(1.3)

Therefore, for the elastic scattering problem of Equation (1.2), we need to
pose the Kupradze radiation condition

lim
r→∞

(
∂up
∂r
− iωpup

)
= 0 and lim

r→∞

(
∂us
∂r
− iωsus

)
= 0, r = |x|, (1.4)

uniformly in all directions x̂ = x/|x|. Moreover, one can also expand the
functions us and up as

us(x) =
1

4π

eiωs|x|

|x|
n−1
2

u∞s (x̂) +O
(
|x|−

n+1
2

)
as |x| → ∞,

up(x) =
1

4π

eiωp|x|

|x|
n−1
2

u∞p (x̂) +O
(
|x|−

n+1
2

)
as |x| → ∞,

(1.5)

for n = 2, 3, where u∞s and u∞p denote the transversal and longitudinal
elastic far fields radiated by the source f . Furthermore, u∞s and u∞p can be
explicitly represented by

u∞s (e) = Πe⊥

(∫
Rn
e−iωse·yf(y)dy

)
, u∞p (e) = Πe

(∫
Rn
e−iωpe·yf(y)dy

)
,

for any unit vector e ∈ Sn−1, where Πe is the projection operator with re-
spect to e. Notice that the vector fields u∞s and u∞p are the tangential and

the normal components of the Fourier transform of f evaluated on Sn−1.
Note that the elastic far fields (1.5) of the Navier’s equation are derived
using the Helmholtz decomposition of Equation (1.2) and the far-field pat-
terns for the Helmholtz equations of (1.3), which is allowed by the radiation
conditions of Equation (1.4). Let us recall our theorems, which were stated
in [2].

Theorem 1.1. Let f = χΩϕ for a bounded domain Ω ⊂ Rn, n ∈ {2, 3}
and bounded vector function ϕ ∈ L∞(Rn). Let ω, µ > 0, nλ + 2µ > 0
and u ∈ H2

loc(Rn) satisfy Equation (1.2) and the radiation condition of
Equation (1.4).

Assume that Ω has a corner (2D) or an edge (3D) that can be connected
to infinity by a path in Rn \ Ω, and that ϕ is Hölder-continuous near it. If
u has zero far-field pattern, then ϕ = 0 on the corner or edge, i.e. ϕ is the
zero vector. In other words, f has no jumps at these locations.
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Theorem 1.2. Let n ∈ {2, 3} and Ω,Ω′ ⊂ Rn be bounded convex polyhedral
domains. Let ϕ,ϕ′ ∈ Cα(Rn), for some α ∈ (0, 1) and have nonzero value
on ∂Ω, ∂Ω′.

Define f = χΩϕ, f ′ = χΩ′ϕ
′. Let ω, µ > 0, nλ + 2µ > 0 and u,u′ ∈

H2
loc(Rn) have elastic sources f ,f ′. In other words they satisfy Equation (1.2)

with the radiation condition of Equation (1.4).
If u and u′ have the same far-field pattern then Ω = Ω′ and ϕ = ϕ′ at

each of their vertices and in three dimensions, edges.

Before stating the last main theorem of [2], let us recall the definition of
the interior transmission eigenfunctions.

Definition 1.3 (Interior transmission eigenfunctions). A pair (v,w) ∈
L2(Ω)× L2(Ω) is called interior transmission eigenfunctions for the Navier
equations with density V ∈ L∞(Ω) at the interior transmission eigenvalue
ω ∈ R+ if {

λ∆w + (λ+ µ)∇∇ ·w + ω2w = 0,

λ∆v + (λ+ µ)∇∇ · v + ω2(1 + V )v = 0,
(1.6)

and v−w ∈ H2(Ω) with v = w and Tνv = Tνw on ∂Ω. Nothing is imposed
on the boundary values of v,w individually.

Above Tν is the boundary tration operator.

Definition 1.4. The boundary traction operator Tν is defined as follows.
In the two-dimensional case it is

Tνu = 2µ
∂u

∂ν
+ λν∇ · u+ µν⊥(∂2u1 − ∂1u2),

where ν = (ν1, ν2) is a unit outer normal on ∂Ω and ν⊥ := (−ν2, ν1). In the
three dimensional case,

Tνu = 2µ
∂u

∂ν
+ λν∇ · u+ µν × (∇× u),

where ν = (ν1, ν2, ν3).

We show the similar conclusion for the interior transmission problem for
an elastic material with varying density, with more specifically conditions as
follows.

Theorem 1.5. Let n ∈ {2, 3} and Ω ⊂ Rn be a bounded domain. Let V ∈
L∞(Ω) be the material density, and µ > 0, nλ + 2µ > 0 be constant Lamé
parameters. Assume that ω > 0 is an interior transmission eigenvalue and
v,w ∈ L2(Ω) are the corresponding transmission eigenfunctions defined by
Equation (1.6).

Let xc be any vertex (2D) or edge point (3D) of ∂Ω around which V and
either one of v,w are Cα smooth in Ω, for some α ∈ (0, 1/2). Then so is
the other, and v(xc) = w(xc) = 0 if V (xc) 6= 0.

The note is organized as follows. In Section 2, we discuss the corner scat-
tering in a plane, and we use the dimensional reduction technique to solve
the three-dimensional case. Finally, the proofs of our theorems are in Sec-
tion 3. The proofs and statements Lemma 2.4 onwards have been updated
compared from the corresponding ones in [2].
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2. Corner scattering

In the rest of this article, let us write L := λ∆ + (λ + µ)∇(∇·) for the
second order elliptic operator. In particular, in two dimensions, note that
the system of Equation (1.2) can be expressed componentwise as

Lu =

(
λ∆ + (λ+ µ)∂2

1 (λ+ µ)∂1∂2

(λ+ µ)∂1∂2 λ∆ + (λ+ µ)∂2
2

)
u = f in R2. (2.1)

From now on we identify R2 with the complex plane C, and we have the
following results, which were shown in [2].

Lemma 2.1. Let Ω ⊂ C such that Ω ∩ (R− ∪ {0}) = ∅. Let

v(x) =

(
exp(−s

√
z)

i exp(−s
√
z)

)
(2.2)

where z = x1 + ix2 and s ∈ R+. The complex square root is defined as

√
z =

√
|z|
(

cos
θ

2
+ i sin

θ

2

)
(2.3)

where −π < θ ≤ π is the argument of z. Then v satisfies Lv = 0 in Ω.

Proposition 2.2. Let v : R2 → C be the function given in Lemma 2.1 and
define the open sector

K = {x ∈ R2 | x 6= 0, θm < arg(x1 + ix2) < θM}

for angles satisfying −π < θm < θM < π. Then∫
K
v1(x)dx = 6i(e−2θM i − e−2θmi)s−4.

In addition for α, h > 0 and j ∈ {1, 2} we have the upper bounds∫
K
|vj(x)| |x|α dx ≤ 2(θM − θm)Γ(2α+ 4)

δ2α+4
K

s−2α−4

and ∫
K\B(0,h)

|vj(x)| dx ≤ 6(θM − θm)

δ4
K

s−4e−δKs
√
h/2.

where δK = min
θm<θ<θM

cos(θ/2) is a positive constant.

Proposition 2.3. Let Ω ⊂ R2 be a bounded domain and define the cone

K =
{
x ∈ R2 | x 6= 0, θm < arg(x1 + ix2) < θM

}
(2.4)

with angles −π < θm < θM < π where θM 6= θm + π. Assume that 0 ∈ ∂Ω is
the centre of a ball B for which Ω ∩B = K ∩B.

Given α ∈ (0, 1) and f ∈ Cα(Ω ∩B), let u ∈ H2(Ω ∩B) solve

λ∆u+ (λ+ µ)∇∇ · u+ ω2u = f in Ω ∩B, (2.5)

for some fixed ω > 0. If u = 0 and Tνu = 0 on ∂Ω ∩B then f(0) = 0.

In what follows, we give more details about the proof of [2, Lemma 3.3].
We denote the range of the various functions explicitly to make it clearer
which function is a three-vector and which a two-vector.
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Lemma 2.4 (Dimension reduction). Let D be a locally Lipschitz open set
in R2, L > 0 and α ∈ (0, 1) be constants. Given f ∈ Cα(D × [−L,L];C3),
let u ∈ H2(D × (−L,L);C3) be a solution of{

Lu(x) + ω2u(x) = f(x), for x = (x′, x3) ∈ D × (−L,L),

u(x) = 0, Tνu(x) = 0 for x = (x′, x3) ∈ Γ× (−L,L),
(2.6)

where Γ ⊂ ∂D consists of two connected segments, ν is the unit outer normal
on Γ × (−L,L), and ω, µ > 0, 3λ + 2µ > 0. Consider φ ∈ C∞c (−L,L) and
ξ ∈ R, and we define the dimension reduction operator Rξ by

Rξh(x′) :=

∫ L

−L
e−ix3ξφ(x3)h(x′, x3)dx3, for x′ ∈ D.

Then one has Rξu ∈ H2(D;C3) ∩ Cα(D;C3). If u ∈ W 2,2/(1−α)(D ×
(−L,L);C3) then there is a function Fξ = Fξ(x

′) ∈ Cα(D;C3) such that
Rξu is a solution of{

L̃(Rξu)(x′) + ω2Rξu(x′) = Fξ(x
′) for x′ ∈ D,

Rξu(x′) = 0, Tν (Rξu
′) (x′) = 0, ∂ν (Rξu3) (x′) = 0 for x′ ∈ Γ,

(2.7)

where

L̃ :=

λ∆′ + (λ+ µ)∂2
1 (λ+ µ)∂1∂2 0

(λ+ µ)∂1∂2 λ∆′ + (λ+ µ)∂2
2 0

0 0 λ∆′

 (2.8)

with ∆′ := ∂2
1 +∂2

2 being the Laplace operator with respect to the x′-variables,
and u = (u′, u3) = (u1, u2, u3). Furthermore, we have

Fξ(x
′) = Rξf(x′) for x′ ∈ Γ. (2.9)

Now we abuse the notation to denote that Tνu in (2.6) stands for the
boundary traction in the three dimension, and Tν (Rξu

′) (x′) in (2.7) denotes
the boundary traction of the two dimensional vector u′ = (u1, u2) evaluated
at the point x′ ∈ R2.

Proof of Lemma 2.4. Denote u = (u1, u2, u3). By using [1, Lemma 3.4] one
can conclude that Rξu` ∈ H2(D) for ` = 1, 2, 3. It is also in Cα(D) because
H2(D) embeds into it in two dimensions. Hence, it remains to show that
Rξu solves Equation (2.7), such that Fξ ∈ Cα(D;C2) and (2.9) hold. The
beginning of the proof proceeds as in that of [2, Lemma 3.3].

In order to derive the equation forRξu, note that in the three-dimensional
case, the isotropic elastic operator L can be rewritten as

L =

λ∆ + (λ+ µ)∂2
1 (λ+ µ)∂1∂2 (λ+ µ)∂1∂3

(λ+ µ)∂1∂2 λ∆ + (λ+ µ)∂2
2 (λ+ µ)∂2∂3

(λ+ µ)∂1∂3 (λ+ µ)∂2∂3 λ∆ + (λ+ µ)∂2
3

 , (2.10)

then we also have L̃u+ ω2u = f − h(u), where

h(u) =

 λ∂2
3u1 + (λ+ µ)∂3∂1u3

λ∂2
3u2 + (λ+ µ)∂3∂2u3

(2λ+ µ)∂2
3u3 + (λ+ µ)∂3(∂1u1 + ∂2u2)

 . (2.11)
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The Lebesgue dominated convergence theorem and an integration by parts
formula yield that

L̃(Rξu) + ω2Rξu = Fξ(x
′) := Rξf(x′) + Iξ(x

′) + IIξ(x
′), (2.12)

where

Iξ(x
′) =−

∫ L

−L
e−ix3ξφ′′(x3)

 λu1

λu2

(2λ+ µ)u3

 (x′, x3)dx3

+ 2iξ

∫ L

−L
e−ix3ξφ′(x3)

 λu1

λu2

(2λ+ µ)u3

 (x′, x3)dx3

+ ξ2Rξ

 λu1

λu2

(2λ+ µ)u3

 (x′),

(2.13)

and

IIξ(x
′) =− iξ(λ+ µ)Rξ

 ∂1u3

∂2u3

∂1u1 + ∂2u2

 (x′)

+ (λ+ µ)

∫ L

−L
e−ix3ξφ′(x3)

 ∂1u3

∂2u3

∂1u1 + ∂2u2

 (x′, x3)dx3.

(2.14)

This gives the first part of (2.7). The following is where more details and
some modifications to the proof of [2, Lemma 3.3] are needed.

Let us show that the boundary condition in (2.7) holds. Since u = 0 on
Γ×(−L,L), one can easily seeRξu = 0 on Γ. On the other hand, from u = 0
on Γ× (−L,L), we see that ∂3u1 = ∂3u2 = ∂3u3 = 0 on Γ× (−L,L) because
∂3 is along the direction of the boundary. Using this, and noting that the
unit outer normal vector is of the form ν = (ν1, ν2, 0) on Γ × (−L,L), a
direct computation yields that

0 = Tνu

=

µ (2∂1u1ν1 + ∂1u2ν2 + ∂2u1ν2) + λ (∂1u1ν1 + ∂2u2ν1)
µ (∂1u2ν1 + 2∂2u2ν2 + ∂2u1ν1) + λ (∂1u1ν2 + ∂2u2ν2)

µ (∂1u3 + ∂2u3)


=

(
Tν(u′)

µ (∂1u3 + ∂2u3)

) (2.15)

on Γ×(−L,L), where Tν(u′) in the second line of the above equality denotes
the traction operator on Γ ⊂ R2. In addition, the differential operators and
components of ν in (2.15) commute with the dimensional reduction operator
Rξ. We apply it to (2.15) and see that (2.7) holds.

By the Minkowsky integral inequality and the Hölder inequality we note
that Iξ ∈ H2(D) which embeds into Cα(D) by the Sobolev embedding. We
shall need this argument later and it is a simple generalization of the one
in [1, Lemma 3.4], so here it is in more detail: let β ∈ N2. Then dominated
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convergence implies that

∂βx′

∫ L

−L
e−ix3ξψ(x3)w(x′, x3)dx3 =

∫ L

−L
e−ix3ξψ(x3)∂βx′w(x′, x3)dx3 (2.16)

for any smooth ψ and w. The Minkowski and Hölder inequalities give then∥∥∥∥∂βx′ ∫ L

−L
e−ix3ξψ(x3)w(·, x3)dx3

∥∥∥∥
Lp(D)

≤
∫ L

−L
‖ψ‖∞

∥∥∥∂βx′w(·, x3)
∥∥∥
Lp(D)

dx3

≤‖ψ‖∞
(∫ L

−L
dx3

)1−1/p ∥∥∥∥∥∥∥∂βx′w(·, x3)
∥∥∥
Lp(D)

∥∥∥∥
Lp((−L,L),x3)

=(2L)1−1/p ‖ψ‖∞
∥∥∥∂βx′w∥∥∥

Lp(D×(−L,L))

(2.17)

and this can be then extended to any w ∈W 2,p(D×(−L,L)). In other words,
any dimension reduction operator (of the type in the Lemma statement) will
map W k,p(D × (−L,L))→W k,p(D) for k ∈ N and 1 ≤ p <∞.

We will show that Fξ ∈ Cα(D;C2) next by showing the same for all

of its three terms in (2.12). Note that Rξf ∈ Cα(D;C2) by [1, Lemma
3.4] because f is Hölder continuous with the exponent α. We showed that
Iξ ∈ Cα(D;C2) right before (2.16). We will show that IIξ ∈ Cα(D;C2) next.

Recall that u ∈ W 2,2/(1−α)(D × (−L,L);C3). This implies that ∂xkuj ∈
W 1,2/(1−α)(D × (−L,L);C) for all j, k = 1, 2, 3. The dimension reduction

argument (2.16)–(2.17) implies that IIξ ∈ W 1,2/(1−α)(D;C2) because the
components of IIξ are sums of dimension reduction operators applied to

various ∂xkuj . This space embeds into Cα(D;C2) by Sobolev embedding.

It is easy to see that Iξ(x
′) = 0 for x′ ∈ Γ since u(x′, x3) = 0 for (x′, x3) ∈

Γ × (−L,L). To prove (2.9) it remains to show that that IIξ = 0 on Γ. By

denoting Γ := S1 ∪ S2, where S1, S2 are segments and S1 ∩ S2 = {x′0} is
the corner point, we only need to demonstrate that IIξ(x

′) = 0 on S1. By
choosing suitable boundary normal coordinates, without loss of generality,
we may assume that S1 × (−L,L) ⊂ span{e1, e2} ⊂ R3 with its normal
direction ν = e3. Here {e1, e2, e3} forms the standard orthonormal basis in

R3. Recall that u ∈ H2
loc(R3;C3), then one has

∂uj
∂xk
∈ H1

loc(R3) for j, k ∈

{1, 2, 3}. Therefore,
∂uj
∂xk

∣∣∣
Γ×(−L,L)

is a well-defined L2(Γ× (−L,L))-function

in the trace sense.
Since u = 0 on S1× (−L,L), we have

∂uj
∂xk

= 0 for j = 1, 2, 3 and k = 1, 2.

Therefore, by using the boundary traction Tνu = 0 on S1 × (−L,L), and
that µ > 0, λ + 2µ > 0 which follow from the assumptions, one can easily

see that
∂uj
∂xk

= 0 on Γ × (−L,L) for j, k = 1, 2, 3. Similar arguments hold

when x′ ∈ S2, which proves that IIξ(x
′) = 0 on Γ. This demonstrates

Equation (2.9). �

Proposition 2.5. Let Ω ⊂ R3 be a bounded domain with 0 ∈ ∂Ω. Let θm,
θM be the number given by Proposition 2.3 and K be the cone defined by
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Equation (2.4). Suppose that Ω has an edge of opening angle θM − θm, that
is, given an origin-centred ball B ⊂ R2 and there exists L > 0 such that

(B × (−L,L)) ∩ Ω = (B ∩ K)× (−L,L).

Given f ∈ Cα
(
(B × (−L,L)) ∩ Ω;C3

)
for some α ∈ (0, 1), let u ∈

H2((B×(−L,L))∩Ω;C3) be a solution of Lu+ω2u = f in (B×(−L,L))∩Ω
where ω, µ > 0, 3λ+ 2µ > 0. Then

u = Tνu = 0 on (B × (−L,L)) ∩ ∂Ω implies that f(0) = 0

if u ∈W 2,2/(1−α)((B × (−L,L)) ∩ Ω;C3).

Proof. By Lemma 2.4, given any ξ ∈ R, there are Fξ ∈ Cα(B ∩ K;C3) and

a 3-vector U ∈ H2(B∩K;C3)∩Cα(B ∩ K;C3) fulfilling L̃U = Fξ in B∩K,

where L̃ is defined by Equation (2.8) and Fξ(x
′) = Rξf(x′) on B ∩ ∂K.

Splitting L̃ into an operator acting on (U1,U2) and another acting on U3

this is equivalent to having both(
λ∆′ + (λ+ µ)∂2

1 (λ+ µ)∂1∂2

(λ+ µ)∂1∂2 λ∆′ + (λ+ µ)∂2
2

)(
U1

U2

)
+ ω2

(
U1

U2

)
=

(
(Fξ)1

(Fξ)2

)
(2.18)

and

λ∆′U3 + ω2U3 = (Fξ)3 (2.19)

in B ∩ K ⊂ R2. Here ∆′ = ∂2
1 + ∂2

2 is the two-dimensional Laplacian. Note
that the operator in (2.18) is the same as in (2.5). Furthermore, Lemma 2.4
shows that (

U1

U2

)
= Tν

(
U1

U2

)
= 0, B ∩ ∂K, (2.20)

where Tν is the two-dimensional boundary traction, and

U3 = ∂νU3 = 0, B ∩ ∂K. (2.21)

We are going to deal with the two-dimensional elastic system of Equa-
tions (2.18) and (2.20). Note that since µ > 0, we see that 3λ + 2µ > 0
implies 3λ + 3µ > 0 and hence also 2λ + 2µ > 0, so the system represents
indeed elasticity. Then Proposition 2.3 implies that (Fξ)1(0) = (Fξ)2(0) = 0.
Next, if λ = 0 in (2.19), we see that (Fξ)3(0) = ω2U3(0) = 0. If λ 6= 0, then
(2.19), (2.21) and the Helmholtz case from [1, Proposition 3.3] imply∗ that
(Fξ)3(0) = 0.

Finally, recall that

0 = Fξ(0) = Rξf(0) =

∫ L

−L
e−ix3ξφ(x3)f(0, x3) dx3,

for any smooth cut-off functions φ(x3) ∈ C∞c ((−L,L)) and for any ξ ∈ R.
The Fourier inversion formula implies that f(0) = 0.

�

∗They have ω = 0, but it is not an issue. We can set f = (Fξ)3/λ − ω2U3/λ, u = U3

and u′ = f ′ = 0 in that proposition.
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3. Proof of Theorems

In the end of this note, we prove our theorems which stated in Section 1.

Proof of Theorem 1.1. Rellich’s lemma for the Helmholtz equation (see e.g.
[3, Lemma 2.11]) and the unique continuation principle imply that up =

us = 0 in the connected component of Rn\Ω that reaches infinity. Hence u =
0 and Tνu = 0 on the boundary of the corner or edge. The 2D case follows
from Proposition 2.3. For the 3D case, it would follow from Proposition 2.5
if u would be smoother. However we see that u ∈ W 2,p

loc (R3;C3), for any
p ∈ (1,∞) by [4, Theorem 7.3] and this is enough. �

Proof of Theorem 1.2. By Rellich’s lemma for the Helmholtz equation again
and the unique continuation principle, one must have up = u′

p, us = u′
s in

Rn \ Ω ∪ Ω′. Without loss of generality, we may assume Ω 6⊂ Ω′. Then by
convexity there is a corner (2D) or edge (3D) point xc ∈ ∂Ω \ Ω′. Since
u = u′ outside Ω ∪ Ω′ we have u = u′ and Tνu = Tνu

′ on ∂Ω near xc. Set
w = u− u′. We have

λ∆w + (λ+ µ)∇∇ ·w + ω2w = f

in Rn near xc where f ′ = 0, with w ∈ H2. The interior elliptic regularity of
[4, Theorem 7.3] implies that w ∈W 2,2/(1−α) in a smaller neighbourhood of
xc. Proposition 2.3 and Proposition 2.5 — the latter requiring the additional
integrability from the previous sentence — imply that ϕ(xc) = 0. But this
is a contradiction since ϕ 6= 0 on ∂Ω. Hence Ω ⊂ Ω′. The same proof with
Ω,Ω′ switched shows that Ω′ ⊂ Ω. Therefore, Ω = Ω′.

Next, let xc be a vertex (2D) or an edge point (3D) of ∂Ω = ∂Ω′. If
w = u− u′ then this time

λ∆w + (λ+ µ)∇∇ ·w + ω2w = f − f ′

in Rn near xc with w ∈ H2. As above, [4, Theorem 7.3] implies that

w ∈ W 2,2/(1−α) in a smaller neighbourhood of xc. Rellich’s lemma for the
Helmholtz equation and the unique continuation principle for the Navier
equations imply that w = 0 and Tνw = 0 on ∂Ω near xc in this case too.
Proposition 2.3 and Proposition 2.5 imply f = f ′ at xc. �

Finally, we can prove the third main theorem in this paper.

Proof of Theorem 1.5. Move coordinates so that xc = 0 for this proof. In
two and three dimensions H2 embeds into Cα if 0 < α < 1/2. So u = v−w
is Hölder-continuous in the neighbourhood of the corner or edge† and thus
both v and w are too, since one of them is in Cα near the corner or edge
by assumption.

Set f = −ω2V v and u = v −w. These functions satisfy

Lu+ ω2u := λ∆u+ (λ+ µ)∇∇ · u+ ω2u = f (3.1)

with u ∈ H2(Ω;Cn), u = Tνu = 0 on ∂Ω, and f ∈ L2(Ω;Cn).

†In this theorem Ω is not necessarily smooth enough for Sobolev embedding to hold
globally.
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In the two-dimensional case Proposition 2.3 implies that f(0) = 0. Let us
consider the case n = 3 next. Let B ⊂ R2 and L > 0 be as in Lemma 2.4
but small enough that

(1) a slightly larger ball Bm and length Lm also satisfy those assump-
tions, and

(2) V,v are Cα in (Bm × (−Lm, Lm)) ∩ Ω.

Denote Um = Bm × (−Lm, Lm) and U = B × (−L,L). Thus we have u ∈
H2(Um ∩ Ω;C3), f ∈ Cα(Um ∩ Ω;C3) and (3.1) there too.

We will extend u to the whole Um next and show that the extension is
in H2(Um;C3). For h ∈ L1(Um ∩ Ω) let E0h be the extension of h by zero
to Um \ Ω. Let us show that ∂j and E0 commute for h ∈ H1(Um ∩ Ω) with
h = 0 on Um ∩ ∂Ω. Let φ ∈ C∞0 (Um). Weak derivatives and integration by
parts yield that

〈∂jE0h, φ〉 = −〈E0h, ∂jφ〉

= −
∫
Um∩Ω

h∂jφdx

=

∫
Um∩Ω

∂jhφ dx−
∫
∂(Um∩Ω)

hνjφdσ

= 〈E0∂jh, φ〉

(3.2)

because h = 0 on Um ∩ ∂Ω and φ = 0 on ∂Um. Hence ∂jE0h = E0∂jh.
The final paragraph of the proof of Lemma 2.4 applies here too, and it

implies that ui = ∂jui = 0 on Um ∩ ∂Ω for all i, j. Because ui ∈ H2(Um ∩
Ω;C) and the boundary conditions, we see that both ui and ∂jui satisfy the
conditions required of h above. Hence ∂jE0ui = E0∂jui ∈ L2(Um;C) and
∂k∂jE0ui = E0∂k∂jui ∈ L2(Um;C) for all j, k. Thus E0ui ∈ H2(Um;C) for
all i.

It follows that E0u ∈ H2(Um;C3) and

LE0u = E0f − ω2E0u, in Um. (3.3)

Note that E0u ∈ H2(Um;C3) ↪→ L∞(Um;C3) by the Sobolev embedding.
Also f ∈ L∞(Um ∩ Ω;C3) so E0f ∈ L∞(Um;C3). Thus the right-hand side
above is in L∞(Um;C3). Interior elliptic regularity [4, Theorem 7.3] implies
that in U b Um we have u ∈ W 2,p(U) for any 2 < p < ∞, so in particular
also for p = 2/(1− α).

We have thus that f ∈ Cα(U ∩ Ω;C3), u ∈ W 2,2/(1−α)(U ∩ Ω;C3) and
(3.1) with the zero boundary Dirichlet and traction conditions. Proposi-
tion 2.5 implies that f(0) = 0, i.e. f vanishes at the given point on the
edge. If V (0) 6= 0 then v(0) = 0 and since v = w on ∂Ω, so is w(0) = 0. �
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