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Sections

Shape determination in inverse problems
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Scattering theory

The total wave u satisfies

uji(x) (A+K)u=0, R"\Q,
& effect on u from the object Q

@ The incident wave u; has
// (A + kz)u,- = O, R".
us(x) The scattered wave us satisfies a
radiation condition at infinity.

incident wave scattered wave

/ '
u(x) = ui(x) + us(x)
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Inverse scattering in real life

Example: Lord Rutherford’s gold-foil experiment

SCATTERED W’, h‘u
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Single incident wave
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Rutherford experiment’s conclusions

THOMSON RUTHERFORD
Lo ° o e :
P — Qo '
\ s .

y

measurement + a-priori information = conclusion
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Waves in scattering theory
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Inverse scattering: measurements

) ) )
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| —
Measurement: A, is the far-field pattern of the scattered wave

lk|x|

1 R X
u:0) = Loz Aa(%) + O (|x|"/2>’ =N
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Different inverse scattering problems

Given the far-field map u; — A,., recover the scattering
potential V/, its support Q or an impenetrable obstacle Q.

Solved when

e far-field map given for all waves of a single frequency:
Schiffer 1967: Dirichlet obstacle

Sylvester—Uhlmann 1987: 3D Calderén problem
Nachman, Novikov both in 1988: 3D scattering
Bukhgeim 2007: 2D scattering

®  countless variations

o O O O

My focus is on single measurement: A, given for only one u;.

Schiffer’'s problem
Can a single measurement determine Q7
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Single measurement inverse obstacle scattering
Terminology from acoustics:
— sound-soft < u =0 on 00
— sound-hard < 0,u = 0 on 09

Past results with N different incident waves:
¢ N = oo sound-soft obstacle (Schiffer 1987)

® N < oo obstacle, sound-soft (Colton—Sleeman 1983),
sound-hard (Kirsch—Kress 1993)

¢ Alves—Ha-Duong 1997: N = oo for scattering surface, N =1
plane wave for sound-soft flat screen

¢ Admissible / polyhedral obstacles and screens: Rondi 2003
N < oo, Cheng—Yamamoto 2003 N = 1,2, Alessandrini—-Rondi
2005 sound-soft N = 1, Liu—Zou 2006 sound-hard N = n,
Rondi 2008 and Liu—Petrini-Rondi—Xiao 2016 stability, . ..
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Single measurement vs infinitely many

With one measure, you only have one solution to your PDE to
work with!

— you need a deeper understanding of the direct problem!

— you need to analyse how solutions behave near boundaries
or other points of interest!
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Sections

Flat screen determination
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Scattering from a flat screen

Definition

Q C R3 is a flat screen of Q = Qg x {0} for some simply
connected bounded domain ©y C R? whose boundary is
smooth.

Definition

Let u;: R® — C satisfy (A + k?)u; =0 in R and let Q be a
flat screen. u = u; + us € HE _(R3\ Q) solves the direct screen
scattering problem if

(A+K)u, =0, R*\Q,
ui(x) + us(x) =0, x €Q,
r(0, — ik)us = 0, r— oo,
where r = |x| and the limit is uniform in all directions X € S2.
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Inverse problem statement

Definition

Let u, satisfy the Sommerfeld radiation condition and

(A + k?)us = 0 outside a ball B C R3. We say u®: S*> — C is
the far-field pattern of wug, if

-5 ()

uniformly over X as |x| — oo.

Inverse problem
Given u2°(X) for all X € S® and one k > 0, can we determine
the shape Qq of a flat screen Q = Qg x {0}7
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Our results (Blasten, Piivarinta, Sadique 2020)

Theorem
Q C R3 a flat screen and u; satisfies the direct problem. Then

1

s

/ e "V (Osuf — O5u])(y) dy
R2x {0}

for X € S?. f* are the one-sided limits to R? x {0}.

Theorem
Q,Q flat screens, k > 0, u; an incident wave. Let us, is satisfy
the direct problem for 0,2, respectively. Assume ul® = ig°.
o [fui(x1,%,x3) # —ui(x1, x2, —x3) at some point, then
Q=qQ.
o Ifui(x1,%,x3) = —ui(x1, x2, —x3) everywhere, then
uP = e =0 for all Q, 4.

S
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Comparison to past result

Theorem (Alves, Ha-Duong 1997: by plane waves)

Consider the screens Q1,5 in the plane {x3 = 0} where we
have Dirichlet boundary conditions and only one incident plane
wave with direction d. If the associated far fields Fy, F, (of the
scattered Waves) are equa/, Ie.

Fi(X) = F(%) VR e §?

we have Q1 = Q.

In our result, we can have any incident wave. Even “bad” ones
that vanish one Q.
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Sections

Proofs

16 /22



Far-field representation, part 1/2

_ exp(ik|x — yl) 2\y
q)(X’y)— 47T‘X—y‘ ) (AX+k )q)_(s}’(x)

For x € D with Q C 9D, D C R? x R

%uwrxéw&nm+«%unw
+/ (D(x, y)h us() — us(y)Dd(x, ¥)) ds()
oD
0=— [ o(xy)(& +K)uly)dy
B\D

[ (@0n)tuly) - ) (x.y)ds(y)
a(B\D)
Split (B \ D), let radius of B grow, use Sommerfeld radiation. . .
wb) = [ Sley)(Oaud — 00 )()dy
R2x {0}
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Far-field representation, part 2/2
For y in a compact set K and |a| <1

ik|x— ik
e et L N
x—yl x|

lim sup sup|x||9)
r=00 |x|=ryeK

Definition of u2°, namely ug(x) = e™Xl|x|71(u(R) + O(]x| 1)),
gives
N
u (%) = |X|‘[>T‘Oomus(|x|x)
o Ix| exp(ik|x — yI) _
= | . == (Jzuf — O d
00 @ Jga, o)~ Arlx — y] (Ot = 00 )y
1 _ikxe -
= e " (Dsug — Osug ) (y) dy,
T JrR2x {0}

which is our first theorem. It was ok since dzu} — dsuy € H1/2,
and the difference of the exponentials had |a| < 1 above. [
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Solving the inverse problem, part 1
Setting

1

S

/ e " p(y1, y2) dy, xes
R2x {0}
implies that p = p(x1, x2) can be determined from u2°:

S

o1 N
ur(X) = 590(/“1, kx)

SO

ﬁp(fl,ﬁz) = 2u§’°(§1/k, 62/k7 \/1 - (gl/k)2 - (52/1()2)

and then invert the Fourier transform.

This gives us dzul — d3u; from uZ®. We need to then

determine Q.
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Solving the inverse problem, part 2

Define
p(x1, %) = (Osuf — Ozu; ) (X1, x2, 0).

It is a H~1/2(Qq)-distribution. We will show that Qo = supp p.
@ supp p C Qo because of elliptic regularity of u, outside of Q.

o If Qy ¢ supp p then Jc, r such that B(c,r) C Qg \ supp p.
Let's investigate the behaviour of us and u; in the tube
B(c, r) x R (on the whiteboard).

Then U,'(X17X2,X3) = —U,'(Xl,Xz7 —X3) for all x € R3. [ |
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