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1 History and ordinary backscattering

Scattering theory:

Incident wave ui of single frequency k ∈ R given (e.g. plane-wave), the scattered
wave is us and their sum u is the physical total field. The sign of “−ik” tells
that this is a causal wave (“+” is anticausal)

(−∆− k2)ui = 0 x ∈ Rn,
(−∆− k2 + q)u = 0 x ∈ Rn,

u = ui + us

lim
r→∞

r
n−1
2 (∂r − ik)us = 0 r = |x|

Fundamental solution:

By Φ we denote the causal fundamental solution to the background equations,
i.e. the unique solution to

(−∆− k2)Φ(x) = δ0(x) x ∈ Rn

lim
r→∞

r
n−1
2 (∂r − ik)Φ = 0 r = |x|

E.g. in 3D and higher dimensions Φ(x, k) = |x|−n−1
2 exp(ik|x|). Note: for

example in 3D, by passing to the time-domain, and setting φ(x, t) = δ0(t −
|x|)/(4π|x|) we have (∂2t − ∆)φ = δ0(t)δ0(x), the wave propagates to infinity,
and moreover Φ(x, k) =

∫∞
−∞ φ(x, t) exp(itk)dt.

Lippman–Schwinger equation:

A numerically and function-theoretically useful way to solve the equation on
the frequency domain is

u(x) = ui(x)−
∫
Rn

Φ(y − x)q(y)u(y)dy.
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Far-field pattern / scattering amplitude:

These are the measurements of scattering experiments. One thinks of the in-
cident wave ui as an input, and of the far-field pattern us∞ as output. We can
show (in 3D) that Φ(y − x) = exp(ik|x|)|x|−1(exp(−ikx̂ · y) +O(|x|−1)). Then

us(x) = |x|−n−1
2 exp(ik|x|)us∞(x̂) +O(|x|−n/2),

us∞(x̂) = −
∫
Rn

exp(−ikx̂ · y)q(y)u(y)dy.

Born series / approximation:

Build the total wave as successive approximations (or Neumann series) using
the Lippmann–Schwinger equation. Let Lf(x) = −

∫
Φ(y−x)q(y)f(y)dy. Then

the Born series is
u = ui + Lui + L2ui + L3ui + . . .

and the Born approximation is u ≈ ui + Lui so the scattered field and far-field
are approximated by

us(x) ≈ −
∫
Rn

Φ(y − x)q(y)ui(y)dy,

us∞(x) ≈ −
∫
Rn

exp(−ikx̂ · y)q(y)ui(y)dy.

Incident plane wave:

Most of the inverse backscattering literature deals with incident plane waves (we
will have initial point-source waves in the second part of the talk). Let ui(x) =
exp(ikx ·θ) for a given |θ| = 1. This is a plane wave propagating in the direction
θ: U i(x, t) := Fk{ui} = 1

2π

∫∞
−∞ exp(−ikt)ui(x, k)dk = 1

2π

∫∞
−∞ exp(−ik(θ · x −

t))dk = δ0(θ ·x− t) which indeed propagates along the vector θ as t→ +∞. To
emphasize the incident direction and frequency, from now on write

us∞(x̂) = us∞(x̂, θ, k).

Inverse scattering problems:

As a goal we want to recover q. We can probe for it by sending incident waves
from admissible directions θ and measuring the far-field pattern at admissible
directions x̂.

2



incident direction θ ∈ Sn−1

ob
se
rv
at
io
n
d
ir
ec
ti
on

x̂
∈
Sn

−
1

full data (fixed k)

x̂ = −θ backscattering

x̂ = θ forward scattering

corner scattering (fixed k)

Figure 1:

Dimensions
Full data fixed freq:

S
n−1 × Sn−1 7→ 2n− 2

BS and FS:

S
n−1 ×R 7→ n

CS:
S
n−1 7→ n− 1

(Some) past results of interest:

This list is missing the Russian literature on the subject. I have heard that
Novikov, Grinevich, Manakov and Kurylev among others have worked on this
type of issues. Please send me references should you know more details.

Eskin & Ralston 1989 The inverse backscattering problem in three dimen-
sions. Showed that the map q 7→ us∞(−θ, θ, k) is locally an analytic
homeomorphism (bijection!) near any q in some particular set. Only
know q = 0 is in this set and, dense + open?

Stefanov 1990 A uniqueness result for the inverse backscattering problem.
Showed that

q1 > q2 and for some θ0 us1∞(−θ0, θ0, k) = us2∞(−θ0, θ0, k)∀k then q1 = q2.

Päivärinta & Somersalo 1991 Inversion of discontinuities for the Schrödinger
equation in three dimensions. Idea, given us∞ (more general data than BS),
if q recovered not from the Lippmann-Schwinger equation but from the
Born approximation, i.e. qB then can we say something useful about q
even when no smallness assumptions? Yes, q − qB smoother than q.

Greenleaf & Uhlmann 1993 Recovering singularities of a potential from sin-
gularities of scattering data. Time domain scattering with potential q
cornomal distribution of low enough negative order

(∂2t −∆− q)U = 0 x ∈ R3, t ∈ R
U(x, t) = δ0(x · θ − t) x ∈ R3, t� 0
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Then principal symbol of q can be recovered from symbol of Us∞(−θ, θ, t),
e.g. recover jumps.

Stefanov & Uhlmann 1997 Inverse backscattering for the acoustic equation.
Time-domain backscattering, (∂2t − c2(x)∆)u = 0, if ‖c(x)− 1‖W 10,∞ < ε
then uniqueness for c from BS data.

Ola, Päivärinta, Serov 2001 Recovering singularities from backscattering in
two dimensions. Idea: with a plane-wave the Born approximation gives

us∞(−θ, θ, k) ≈ uB∞(θ, k) = −
∫
Rn

exp(ikθ·y)q(y) exp(iky·θ)(y)dy = −F−1{q}(2kθ)

so then define B(ξ) = us∞(−ξ̂, ξ̂, |ξ|/2) and the Born approximated po-
tential qB = −F{B}. Then the “principal singularities” of q can be
recovered:

q ∈ Hs0 =⇒ q − qB ∈ Hs0+ε

Ruiz & Vargas 2005 Partial recovery of a potential from backscattering data.
Improve Ola–Päivärinta–Serov and do 3D also.

Reyes 2007 Inverse backscattering for the Schrödinger equation in 2D. Still
improve Ola–Päivärinta–Serov, get 1/2 derivative from Born approxima-
tion.

Stefanov & Uhlmann 2009 Linearizing non-linear inverse problems and an
application to inverse backscattering. If linearization of map between
Banach spaces is injective with closed range, then the original problem
has local uniqueness and Lipschitz stability. As an example show Hölder
stability for (∂2t − c2(x)∆) backscattering.

Rakesh & Uhlmann 2014 Uniqueness for the inverse backscattering problem
for angularly controlled potentials. Time domain backscattering. If q1−q2
angularly controlled + same backscattering data then they are equal.

Rakesh & Uhlmann 2015 The point-source inverse backscattering problem.
Same as above but for the point-source problem (defined later in the talk).

Caro, Helin, Lassas 2016 Inverse scattering for a random potential. De-
termines the principal symbol of the covariance operator of a random
potential from a single realization of the backscattering measurements.

Easy-looking open questions:

Almost everything is still open for non-singular potentials:

• us∞(−θ, θ, k) = 0 for all k ∈ R and |θ| = 1, does this imply q = 0 if a-priori
q ∈ C∞0 (Rn)?

• other equations, e.g. Maxwell? Heat?
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1D case:

This is is more or less equivalent to the full data full frequency case in higher
dimensions. Has been solved in the 60’s and 70’s. See Gel’fand–Levitan,
Marchenko, and Gopinath–Sondhi.

2 Point-source backscattering

Problem statement:

Given a potential q compactly supported in the unit disc B, for any source
a ∈ ∂B define the (time-domain) point-source problem

(∂2t −∆− q)Ua(x, t) = δ0(x− a)δ0(t) x ∈ R3, t ∈ R, (1)

Ua(x, t) = 0 x ∈ R3, t < 0. (2)

If Ua1 (a, t) = Ua2 (a, t) when t > 0 for two potentials q1 and q2, then do we have
q1 = q2?

Angular control:

A function f defined in the unit disc B is angularly controlled if∑
i<j

∫
|x|=r

|Ωijf(x)|2dσ(x) 6 S2

∫
|x|=r

|f(x)|2dσ(x)

for all 0 < r < 1 where Ωij = xi∂j − xj∂i are the tangential vector fields at x
on the sphere |x| = r.

Stability for point-source backscattering:

Theorem 1 Let q1, q2 ∈ C7
c (B) with supports distance h > 0 from ∂B. Then

‖q1 − q2‖L2({|x|=r}) 6 eC/r
4‖Ua1 − Ua2 ‖BS

where

‖F‖BS = sup
0<τ<1

∫
a∈∂B

|∂τ (τF (a, 2τ))|2dσ(a).

A fortiori if ‖Ua1 − Ua2 ‖BS < ε then

‖q1 − q2‖L2(B) 6 C ′
(

ln
1

‖Ua1 − Ua2 ‖

)−1/4
.
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Well-posedness of direct problem:

This is “well known” if q infinitely smooth. However impossible to find sources
with finite smoothness giving good enough estimates.

Theorem 2 The above problem has a unique solution in the set of distributions
of order ` when q ∈ C`c(B). It is given by

Ua(x, t) =
δ0(t− |x− a|)

4π|x− a| +H(t− |x− a|)ra(x, t) (3)

and if ` > 7 then ra ∈ C1(R3 × R) with locally finite norm bound. Moreover
Ua is C1 outside the characteristic cone t = |x− a|.

Contribution of my stability paper:

The Rakesh–Uhlmann-proof leads itself quite well for a stability estimate. How-
ever what was missing was Theorem 2, i.e. well-posedness with suitable norm
estimates. Since this talk is about backscattering I will present the inverse
problem solution instead. Moreover it is surprising that the final estimate is of
logarithmic type. A-priori one would have guessed a Lipschitz or Hölder-type
estimate since there is no exponential solutions involved.

Analogue to “Alessandrini-type identity”:

Solving inverse problems always requires an identity tying the boundary meas-
urements to the unknown potential. Here they are

(Ua1−Ua2 )(a, 2τ) =
1

32π2τ2

∫
|x−a|=τ

(q1−q2)(x)dσ(x)+

∫
|x−a|6τ

(q1−q2)(x)k(x, τ, a)dx

(4)
for t > 0 where the kernel k is given by

k(x, τ, a) =
(ra1 + ra2)(x, 2τ − |x− a|)

4π|x− a| +

∫ 2τ−|x−a|

|x−a|
ra1(x, 2τ − t)ra2(x, t)dt.

Under ra1 , r
a
2 ∈ C1 we have k ∈ C1 when |x − a| > 0. That’s why we require

that d(supp qj , ∂B) > h > 0. How to prove the above? Calculate the following
by using (1)–(2) first, and then (3):∫ ∞

−∞

∫
R3

(q1 − q2)(x)Ua1 (x, t)Ua2 (x, 2τ − t)dxdt

Estimating the first term:

This geometrically nontrivial step works for any Q ∈ C1
c (B), |a| = 1 and 0 <

t < 1:

∂τ

(
τ

4πτ2

∫
|x−a|=τ

Q(x)dσ(x)

)
=

1− τ
2

Q((1− τ)a) + E(a, τ), (5)
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|E(a, τ)|2 6
3

π(1− τ)

∑
i<j

∫
|x−a|=τ

|ΩijQ(x)|√
|x| − (1− τ)

dσ(x). (6)

Useful integral identities:∫
|a|=1

∫
|x−a|=τ

f(x)dσ(x)dσ(a) = 2πτ

∫
|x|>1−τ

f(x)

|x| dx∫
|a|=1

∫
|x−a|6τ

f(x)dσ(x)dσ(a) = π

∫
|x|>1−τ

f(x)

|x| (t2 − (1− |x|)2)dx

Proof of stability of the inverse problem:

Write δUa = Ua1 − Ua2 and δq = q1 − q2. Then start by multiplying by τ and
differentiating the “Alessandrini-type” identity (4), and using (5).

∂τ (τδUa(a, 2τ)) =
1− τ
16π

δq((1− τ)a) +
1

8π
E(a, τ) +

∫
|x−a|=τ

δq(x)τk(x, τ, a)dσ(x)

+

∫
|x−a|6τ

δq(x)∂τ (τk(x, τ, a))dx.

Use the C1-estimates for k and the estimate (6) to get

(1− τ)2|δq((1− τ)a)|2 . |∂τ (τδUa(a, 2τ))|2 + (1− τ)−1
∑
i<j

∫
|x−a|=τ

|Ωijδq(x)|√
|x| − (1− τ)

dσ(x)

+

∫
|x−a|=τ

|δq(x)|2dσ(x) +

∫
|x−a|6τ

|δq(x)|2dσ(x).

Then integrate over |a| = 1 and use the useful integral identities∫
|x|=1−τ

|δq(x)|2dσ(x) .
∫
|a|=1

|∂τ (τδUa(a, 2τ))|2dσ(a) +
τ

1− τ
∑
i<j

∫
|x|>1−τ

|Ωijδq(x)|dσ(x)

|x|
√
|x| − (1− τ)

+

∫
|x|>1−τ

|δq(x)|2 τ
2 + 2τ − (1− |x|)2

|x| dx.

Simple algebra, the assumption of angular control for δq and having 1−τ > ε > 0
gives∫
|x|=1−τ

|δq(x)|2dσ(x) . ‖δUa‖
BS

+ Cε−2
∫ τ

0

1√
τ − s

∫
|x|=1−s

|δq(x)|2dσ(x)ds.

Applying Grönwall’s inequality (ϕ(τ) 6 C1+C2

∫ τ
0
ϕ(s′)ds′ ⇒ ϕ(τ) 6 C1 exp(C2τ))

gives the claim.

‖q1 − q2‖L2({|x|=r}) 6 eC/r
4‖Ua1 − Ua2 ‖BS

and also, if ‖Ua1 − Ua2 ‖BS < ε then

‖q1 − q2‖L2(B) 6 C ′
(

ln
1

‖Ua1 − Ua2 ‖

)−1/4
.
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