\( \newcommand{\abs}[1]{{\left\lvert #1 \right\rvert}} \newcommand{\norm}[1]{{\left\lVert #1 \right\rVert}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\D}{\mathscr{D}} \newcommand{\S}{\mathscr{S}} \newcommand{\F}{\mathscr{F}} \)

Test MJ scaling and font: u$u$i$i$f$f$

Test ümlauts, first in the current font (normal, umlaut), then using in mathmode normal, using \ddot and \": uü$u\ddot u\"u$, aä$a\ddot a\"a$, oö$o\ddot o\"o$, aå$a\phantom{a}\r{a}$

GNU project
a span

a paragraph

No enclosing tags!

a paragraph

Enclosed in span.

a paragraph

an empty span before this <p>

The thm above is completely empty
span

paragraph

paragraph

paragraph

paragraph

These three sentences are a paragraph. According to Theorem we have it. Or simply by

Basics of the Hermite functions and transform

The reason to have this CRAZY document is just to try all the different HTML, CSS and JavaScript features.

Here is a try for citing an offline reference: , and with something more descriptive than a simple number: Blåsten, Meikäläinen. In particular see Chapter II. Note that above Blåsten, Meikäläinen is currently not part of the anchor. If it was, then it would display like Chapter II above.

Hermite functions

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ligula lorem, rhoncus vel hendrerit a, varius a turpis. Praesent in mauris non ex vehicula vestibulum sit amet in nulla. Morbi elementum justo vestibulum commodo elementum. Aenean sed gravida nulla. Fusce faucibus, justo sed porta elementum, turpis nunc tempus urna, a tincidunt elit magna non lacus. Fusce ut arcu congue, molestie erat sed, ultricies elit. Fusce a interdum elit. Etiam pharetra vestibulum diam malesuada euismod. Nulla non vestibulum purus. Fusce semper lorem enim, sed lobortis ex interdum blandit. Proin a dapibus augue, non venenatis magna. Maecenas est diam, laoreet eu porta ut, vulputate nec purus.

Vestibulum at iaculis risus. Etiam consectetur ornare ligula quis tincidunt. Nulla ultricies felis a posuere interdum. Quisque interdum neque eu auctor ornare. Curabitur commodo, mi non tincidunt dignissim, ligula lectus ultrices elit, in consectetur ex augue a nibh. Aenean ornare enim pulvinar semper suscipit. Mauris facilisis nisl ligula, eget tempus nisl egestas eget. Aliquam erat volutpat. Aliquam aliquet fermentum tincidunt. Nulla lorem nisl, semper in imperdiet nec, gravida quis arcu. Duis euismod interdum odio, eget fermentum felis eleifend eu. Integer cursus posuere pulvinar.

Ut porta dignissim mi ac rhoncus. Ut in turpis tortor. Quisque vel aliquet mi, sed elementum metus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam mauris neque, vestibulum at posuere eu, dignissim nec nisl. Nullam ullamcorper ipsum et risus pretium, ac cursus mi efficitur. Aenean vel fringilla justo, nec dignissim justo.

An unordered list:

An ordered list:

  1. asdf
  2. faeifs
  3. fewafwa

A description list:

aasdaasdadssdf
adaw dad wad wad wdwa daw dwaw dad wa
faeidawdadsfs
lijfes s fesi fhslkjadf wijasd
fewafwadwwda
fdwalidaw lidaw ijalw dwa ldwijald ja
adaliwjd
ijwefoiewf

The following theorem, Theorem, is of utmost importance. But don't forget the other stuff in the second file. Namely AA and for example AA, AA and AA. Here is a link pretending to be in this text: link.

Let $\psi_\alpha$, $\alpha\in\N$, be Hermite functions. Then \[ \psi_\alpha'(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) - \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x) \] and \[ x\psi_\alpha(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) + \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x). \] Moreover the Hermite functions are eigenfunctions to the quantum mechanical oscillator \begin{equation} \label{eigenFunction} (x^2 - \partial_x^2) \psi_\alpha(x) = (2\alpha + 1)\psi_\alpha(x). \end{equation}

Hermite transform

In this section we will first show that the Hermite functions form an orthonormal set in $L^2(\R)$. After that we will show that the set is complete and that leads to the Hermite transform.

Let $\psi_\alpha:\R\to\R$ be Hermite functions. Then \[ \int_{-\infty}^\infty \psi_\alpha(x)\psi_\beta(x) dx = \delta_{\alpha\beta} \] i.e. the sequence $(\psi_\alpha)_{\alpha=0}^\infty$ is orthonormal in $L^2(\R)$.

Note first the identity $(x+\partial_x)(x-\partial_x) = (x^2-\partial_x^2) + 1$. Combine it with the fact that $\psi_n$ is an eigenfunction for the quantum oscillator \eqref{eigenFunction} to get \[ (x+\partial_x)(x-\partial_x)\psi_n = 2(n+1)\psi_n \] for any $n\in\N$. Note also that the transpose of $x-\partial_x$ in the $L^2$ inner product is $x+\partial_x$.

Hence we get \begin{align*} &\int \psi_\alpha \psi_\beta dx = \frac{1}{2\sqrt{\alpha\beta}} \int (x-\partial_x)\psi_{\alpha-1}(x+\partial_x)\psi_{\beta-1} dx \\ &\qquad = \frac{1}{2\sqrt{\alpha\beta}} \int \psi_{\alpha-1} (x+\partial_x)(x-\partial_x)\psi_{\beta-1} \\ &\qquad = \sqrt{\frac{\beta}{\alpha}} \int \psi_{\alpha-1}\psi_{\beta-1} dx. \end{align*}

Using the previous equation we see that \[ \int \psi_\alpha \psi_\alpha dx = \int \psi_0^2 dx = \pi^{-1/2}\int_{-\infty}^\infty e^{-x^2} dx = 1. \]

If, on the other hand for example $\alpha\lt\beta$, then \[ \int\psi_\alpha\psi_\beta dx = \ldots = c_{\alpha,\beta} \int \psi_0\psi_{\beta-\alpha} dx = c'_{\alpha,\beta} \int_{-\infty}^\infty \partial_x^{\beta-\alpha} e^{-x^2} dx = 0 \] since all the derivatives of Gaussians vanish at infinity.

Let $\mathscr{O}=\{x, \partial_x\}$ be the set of operators containing the multiplication by $x$ and differentiation by $x$ operators. Let $L^0_\alpha = \{\psi_\alpha\}$ and \[ L^{k+1}_\alpha = \{ Sf \mid S\in\mathscr{O}, \, f\in L^k_\alpha \}. \] Then \[ \norm{f}_{L^2(\R)} \leq 2^{k/2} \prod_{\ell=1}^k \sqrt{\alpha+\ell} = \sqrt{ 2^k \frac{(a+k)!}{a!} } \] for any $f \in L^k_\alpha$.

The sequence $(\psi_\alpha)_\alpha$ is orthonormal by Lemma . Hence we have $\norm{\psi_\alpha}_2=1$. Assume that the claim is true for $L^k_\alpha$ for any $\alpha\in\N$. We will prove it for $L^{k+1}_\alpha$. Let that $f\in L^k_\alpha$. Then there are operators $S_1,\ldots,S_k \in \mathscr{O}$ such that $f = S_1S_2\cdots S_k \psi_\alpha$.

Consider the case $S_k = \partial_x$. Let $O\in\mathscr{O}$ and use one of the basic identities to get \begin{align*} &\norm{Of}_2 = \norm{OS_1\cdots S_{k-1} \partial_x \psi_\alpha}_2 \\ &\qquad = \norm{OS_1\cdots S_{k-1} \left( \sqrt{\tfrac{\alpha}{2}}\psi_{\alpha-1} - \sqrt{\tfrac{\alpha+1}{2}}\psi_{\alpha+1}\right)}_2 \\ &\qquad \leq \sqrt{\tfrac{\alpha}{2}} \norm{OS_1\cdots S_{k-1} \psi_{\alpha-1}}_2 + \sqrt{\tfrac{\alpha+1}{2}} \norm{OS_1\cdots S_{k-1} \psi_{\alpha+1}}_2 \\ &\qquad \leq \sqrt{\tfrac{\alpha+1}{2}} 2^{k/2} \left( \prod_{\ell=1}^k \sqrt{\alpha-1+\ell} + \prod_{\ell=1}^k \sqrt{\alpha+1+\ell} \right) \\ &\qquad \leq 2^{(k-1)/2} \sqrt{\alpha+1} \cdot 2 \prod_{\ell=1}^k\sqrt{\alpha+1+\ell} \\ &\qquad \leq 2^{(k+1)/2} \prod_{\ell=1}^{k+1} \sqrt{\alpha+\ell} \end{align*} since $OS_1\cdots S_{k-1} \psi_{\alpha-1}$ and $OS_1\cdots S_{k-1} \psi_{\alpha+1}$ are in $L^k_{\alpha-1}$ and $L^k_{\alpha+1}$, respectively. The same kind of deduction works in the case when $S_k$ is multiplication by $x$. Hence the claim follows by induction.