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Introduction

To learn and do three-dimensional electromagnetic simulation using the
finite-difference time-domain (FDTD) method.

Type of material:
1. Free space

2. Complex dielectric material

3. Frequency-dependent material



Formulation i

Some choice that have been made:

1. The use of Normalised Units:
Maxwell’s equations have been normalized by substituting

E= /2E M

this is a system similar to Gaussian units.

The reason for using it here is the simplicity in the formulation. The E and H fields

have the same order of magnitude. This has an advantage in formulating the PML.
2. Maxwell’s equations with the Flux Density:

Time-domain Maxwell’s equations from which the FDTD formulation is developed.

straight forward formulation:

OE 1

— =—VXxH 2
ot €0 @
%:—LVXE (3)

ot Ho



Formulation ii

formulation using the flux density:

oD
— =VXxH 4
T (4)
D = egef E (5)
OH 1
— =—-—VXE 6
T o (6)

in this formulation, it is assumed that the materials being simulated are
non-magnetic, thatis, H = (1/u0)B



Pulse propagating in free space in one-dimension

Time-dependent Maxwell’s curl equations for free space:

OE 1
— =—VXxH
ot )
OH 1
—=—-——VXE
ot Ko
simple one-dimensional case:
0Ex _ 10H
ot ey 0z
OHy _ 1 0Ex
ot no 0z



Pulse propagating in free space in one-dimension

 The formulation of equations assume that the E and H fields are interleaved in
both space and time.

- The new value of Ey is calculated from the previous value of Ex and the most
resent values of Hy. This is the fundamental paradigm of the FDTD method.

governing equations,

Zn41/2,,y _ En—1/208 At n N1
EM12 k) = T2k W.AX[Hy(kJFZ) Hy(k 2)] (11)

1 1 At = =
H (kv g) =H (kv 5) - Jeoro - Ax {Ex"“/z(k +1) - Ex"“/z(k)} "



Pulse propagating in free space in one-dimension

Once the cell size Ax is choosen, then the time step At is determined by

AXx

At = ,
2-¢

where ¢; is the speed of light in free space. Therefore, remembering that
eopo = 1/(c0)?,

At Ax 1 1

VEolo - A 2-Gy \Jeofig- AX 2

. e 1 1
e =B 05 (e 5) 4 (- 3)

H (k+ %) =H] (k+ %) - % [E’]“/Z(kJr 1) — E’(’“/z(k)}

(13)



Simulation in free space
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Figure 1: FDTD simulation of a pulse in free space after 100 time steps. The pulse originated in the
center and travels outward.
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Simulation in free space
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Figure 2: FDTD simulation of a pulse in free space after 100 time steps. It has two sources, one at
kc — 20 and one at kc + 20



Simulation in free space
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Figure 3: FDTD simulation of a pulse in free space after 100 time steps. Instead of Ex as the
source, use H, at k = kc as the source



Simulation in free space
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Figure 4: FDTD simulation of a pulse in free space after 100 time steps. Instead of Ex as the
source, use a two-point magnetic source at kc — 1 and kc such that hy[kc — 1] = —hy[kc]



Stability and the FDTD method

- An EM wave propagating in free space cannot go faster than the speed of light.

« To propagate a distance of one cell requires a minimum time of At = Ax/co.

With a two-dimensional simulation, we must allow for the propagation in the
diagonal direction, which brings the requirement to At = Ax/(v/2¢).

- With a three-dimensional simulation requires At = Ax/(v/3¢p).

This is summarized by the Courant Condition

. Ax
S Vn-g’

where n is the dimension of the simulation.

At

(17)



Absorbing boundary condition in one dimension

+ Absorbing boundary conditions are necessary to keep outgoing E and H fields
from being reflected back into the problem space.

- If a wave is going toward a boundary in free space, it is traveling at ¢y, the speed
of light.

+ In one time step of the FDTD algorithem, it travels

AXx AXx
Distance = ¢y - At = ¢y - = — 18
0 Co 2 o 5 (18)

- It takes two time steps for the field to cross one cell. Thus an acceptable boundary
condition might be

E7(0) = E{72(1) (19)



Absorbing boundary condition in one dimension
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Figure 5: Simulation of an FDTD program with absorbing boundary conditions. Notice that the

pulse is absorbed at the edges without reflecting anything back.



Propagation in a Dielectric medium

To simulate a medium with a dielectric constant other than 1, we have to add the

relative dielectric constant e, to Maxwell’s equations:

simple one-dimensional case:

E 1

9 = V X H
ot E0Er

oH = —lV X E
ot Ko

OEx _ 1 0Hy
at — eger Oz

OHy 1 OEx

ot __/LO 0z

(22)

(23)



Propagation in a Dielectric medium

governing equations,

1

- Er

ETV2(k) = E; VP (k) -

1 1
Hn+1 k — ) =H"(k R
y <+2) y(+2)

H;’(k-l—;)—H;’(k—;)} (24)

: [EQ*”Q(k +1) - EX”*‘/Z(k)} (25)



Propagation in a Dielectric medium
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Figure 6: Simulation of a pulse striking dielectric material with a dielectric constant of 4. The
source originates at cell number 5.



Simulating with a sinusoidal source
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Figure 7: Simulation of a propagating sinusoidal wave of 700 MHz striking a medium with a relative

dielectric constant of e, = 4.



Simulating with a sinusoidal source
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Figure 8: Simulation of a propagating sinusoidal wave of 3 GHz striking a medium with a relative
dielectric constant of e, = 20.



Propagation in a lossy dielectric medium

general form of time-dependent Maxwell’s curl equations,

oE
ErEOE:VXH—J

oH :—lV X E
ot Ko

J, the current density, can also be written as

J=ocE
where o is the conductivity.
substituting,
O _ 1 9xH-ZE
ot €reo Ereo
simple one-dimensional equation:
OEx(t 1 OH(t
X():_ y()_ UEX(t)

ot ereg  0Z ereg

(29)
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Propagation in a lossy dielectric medium

using the change of variables,

OEx(t) _ 1 OHy(t) LEX(t) (31)
ot ery/Io€o 02 €reo
OHy(t) _ 1 9B 32)
ot RVA 201200 ot

governing equations,

(- 2us) (2)
Eg+1/2(k) _ 2¢ereg E,’Z‘Vz(k)— 2

(1+At~cr> (1+At-o)
€
2¢ereg g 2¢ergg

1 1\ 1]z ~
Hy ! (“ 5) =H (“ 5) -3 [Ex”“/z(k +1) - EX”*‘/Z(k)} (34)

9 3)0 (3]




Propagation in a lossy dielectric medium
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Figure 9: Simulation of a propagating sinusoidal wave striking a lossy dielectric material with a
dielectric constant of 4 and a conductivity of 0.04 (S/m). The source is 700 MHz and originates at

cell number 5.
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Reformulation using the flux density

general form of Maxwell’s equations

oD
— =V XH
ot

D(w) = €0 - &7 (w) - E(w)

H 1
OH _ 1 gxe
ot Ho

where D is the electric flux density.

normalizing these equations, using
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Reformulation using the flux density

which leads to

D _ 1 GuH (40)
ot /eono

D(w) = ¢} (w) - E(w) (41)
OH___ 1 GxE (42)
ot VEolo

We have to get B(w) =ef(w) - E(w) into a time-domain difference equation for
implementation into FDTD. We will assume that we are dealing with a lossy dielectric
medium of the form

W) =er + — (43)
Jw - &g

substituting the above equation,

D(w) = erE(w) + —2— E(w) (44)
Jw - €0
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Reformulation using the flux density

Fourier theory tells us that 1/(jw) in the frequency domain is integration in the time
domain, so the above equation becomes

t
D(t) = e, E(1) +% / E(t')at (45)
JO

the integral will be approximated as a summation over the time steps At:
~ - o At I~
D" =B+ 22N E (46)
€0 i=0
separating the E" term from the rest of the summation:

- - At~ AT
DBy T AR, 7 AL S E (47)
£o 0 i
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Reformulation using the flux density

We can calculate E", the current value of E, from the current value of D and previous
values of E.

n—1
5” _ g - At ZEI
€ 5

n __
Bl = o- At (48)
er+
€0
governing equations,
DMt1/2(ky = D" 1/2 (k) — T (k + 1) —H? (k - 1) (49)
2| 2 y 2

Hp* (k+ %) =H] (k+ %) 1 {EX"“/Z(H 1) — Ef“/z(k)} (50)
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Calculating the frequency domain output

To calculate the E field distribution at every point in a dielectric medium subject to
illumination at various frequencies.

The Fourier transform of the E field E(t) at a frequency f; is calculated by the equation

tr
E(f) = / E(t) - e 2 ftgt (51)
0

the lower limit of the integral is at 0 because the FDTD program assumes all causal
functions and the upper limit is tr, the time at which the FDTD iteration is halted.

Rewriting Eq. (51) in a finite-difference form,

;
E(fy) =>_ E(n-At). e #mh(mAD (52)
n=0

where T is the number of iterations and At is the time step, so tr = At- T
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Calculating the frequency domain output

Equation (52) can be divided into its real and imaginary parts

.
E(fy) =Y E(n-At)-cos(2rf, - At-n)
n=0
T
—j Y _E(n- At)-sin(2rf; - At - n)

n=0

(83)
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