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Introduction

To learn and do three-dimensional electromagnetic simulation using the
finite-difference time-domain (FDTD) method.

Type of material:

1. Free space

2. Complex dielectric material

3. Frequency-dependent material
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Formulation i

Some choice that have been made:

1. The use of Normalised Units:
Maxwell’s equations have been normalized by substituting

Ẽ =

√
ε0

µ0
E (1)

this is a system similar to Gaussian units.
The reason for using it here is the simplicity in the formulation. The E and H fields
have the same order of magnitude. This has an advantage in formulating the PML.

2. Maxwell’s equations with the Flux Density:
Time-domain Maxwell’s equations from which the FDTD formulation is developed.
straight forward formulation:

∂E
∂t

=
1
ε0
∇× H (2)

∂H
∂t

= − 1
µ0
∇× E (3)
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Formulation ii

formulation using the flux density:

∂D
∂t

=∇× H (4)

D = ε0ε
∗
r E (5)

∂H
∂t

= − 1
µ0
∇× E (6)

in this formulation, it is assumed that the materials being simulated are
non-magnetic, that is, H = (1/µ0)B
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Pulse propagating in free space in one-dimension

Time-dependent Maxwell’s curl equations for free space:

∂E
∂t

=
1
ε0
∇× H (7)

∂H
∂t

= − 1
µ0
∇× E (8)

simple one-dimensional case:
∂Ex

∂t
= − 1

ε0

∂Hy

∂z
(9)

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
(10)
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Pulse propagating in free space in one-dimension

• The formulation of equations assume that the E and H fields are interleaved in
both space and time.

• The new value of Ex is calculated from the previous value of Ex and the most
resent values of Hy . This is the fundamental paradigm of the FDTD method.

governing equations,

Ẽn+1/2
x (k) = Ẽn−1/2

x (k)− ∆t
√
ε0µ0 ·∆x

[
Hn

y

(
k +

1
2

)
− Hn

y

(
k − 1

2

)]
(11)

Hn+1
y

(
k +

1
2

)
= Hn

y

(
k +

1
2

)
− ∆t
√
ε0µ0 ·∆x

[
Ẽn+1/2

x (k + 1)− Ẽn+1/2
x (k)

]
(12)
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Pulse propagating in free space in one-dimension

Once the cell size ∆x is choosen, then the time step ∆t is determined by

∆t =
∆x

2 · c0
, (13)

where c0 is the speed of light in free space. Therefore, remembering that
ε0µ0 = 1/(c0)2,

∆t
√
ε0µ0 ·∆x

=
∆x

2 · c0
· 1
√
ε0µ0 ·∆x

=
1
2

(14)

Ẽn+1/2
x (k) = Ẽn−1/2

x (k)− 1
2

[
Hn

y

(
k +

1
2

)
− Hn

y

(
k − 1

2

)]
(15)

Hn+1
y

(
k +

1
2

)
= Hn

y

(
k +

1
2

)
− 1

2

[
Ẽn+1/2

x (k + 1)− Ẽn+1/2
x (k)

]
(16)
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Simulation in free space
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Figure 1: FDTD simulation of a pulse in free space after 100 time steps. The pulse originated in the
center and travels outward.
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Simulation in free space
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Figure 2: FDTD simulation of a pulse in free space after 100 time steps. It has two sources, one at
kc − 20 and one at kc + 20

9



Simulation in free space
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Figure 3: FDTD simulation of a pulse in free space after 100 time steps. Instead of Ex as the
source, use Hy at k = kc as the source
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Simulation in free space
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Figure 4: FDTD simulation of a pulse in free space after 100 time steps. Instead of Ex as the
source, use a two-point magnetic source at kc − 1 and kc such that hy [kc − 1] = −hy [kc]
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Stability and the FDTD method

• An EM wave propagating in free space cannot go faster than the speed of light.

• To propagate a distance of one cell requires a minimum time of ∆t = ∆x/c0.

• With a two-dimensional simulation, we must allow for the propagation in the
diagonal direction, which brings the requirement to ∆t = ∆x/(

√
2c0).

• With a three-dimensional simulation requires ∆t = ∆x/(
√

3c0).

• This is summarized by the Courant Condition

∆t =
∆x√
n · c0

, (17)

where n is the dimension of the simulation.
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Absorbing boundary condition in one dimension

• Absorbing boundary conditions are necessary to keep outgoing E and H fields
from being reflected back into the problem space.

• If a wave is going toward a boundary in free space, it is traveling at c0, the speed
of light.

• In one time step of the FDTD algorithem, it travels

Distance = c0 ·∆t = c0 ·
∆x

2 · c0
=

∆x
2

(18)

• It takes two time steps for the field to cross one cell. Thus an acceptable boundary
condition might be

En
x (0) = En−2

x (1) (19)
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Absorbing boundary condition in one dimension
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Figure 5: Simulation of an FDTD program with absorbing boundary conditions. Notice that the
pulse is absorbed at the edges without reflecting anything back.
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Propagation in a Dielectric medium

To simulate a medium with a dielectric constant other than 1, we have to add the
relative dielectric constant εr to Maxwell’s equations:

∂E
∂t

=
1
ε0εr
∇× H (20)

∂H
∂t

= − 1
µ0
∇× E (21)

simple one-dimensional case:

∂Ex

∂t
= − 1

ε0εr

∂Hy

∂z
(22)

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
(23)
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Propagation in a Dielectric medium

governing equations,

Ẽn+1/2
x (k) = Ẽn−1/2

x (k)− 1
2 · εr

[
Hn

y

(
k +

1
2

)
− Hn

y

(
k − 1

2

)]
(24)

Hn+1
y

(
k +

1
2

)
= Hn

y

(
k +

1
2

)
− 1

2

[
Ẽn+1/2

x (k + 1)− Ẽn+1/2
x (k)

]
(25)
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Propagation in a Dielectric medium
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Figure 6: Simulation of a pulse striking dielectric material with a dielectric constant of 4. The
source originates at cell number 5.
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Simulating with a sinusoidal source
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Figure 7: Simulation of a propagating sinusoidal wave of 700 MHz striking a medium with a relative
dielectric constant of εr = 4.
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Simulating with a sinusoidal source
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Figure 8: Simulation of a propagating sinusoidal wave of 3 GHz striking a medium with a relative
dielectric constant of εr = 20.

19



Propagation in a lossy dielectric medium

general form of time-dependent Maxwell’s curl equations,

εr ε0
∂E
∂t

=∇× H − J (26)

∂H
∂t

= − 1
µ0
∇× E (27)

J, the current density, can also be written as

J = σE (28)

where σ is the conductivity.

substituting,
∂E
∂t

=
1
εr ε0
∇× H − σ

εr ε0
E (29)

simple one-dimensional equation:

∂Ex (t)
∂t

= − 1
εr ε0

∂Hy (t)
∂z

− σ

εr ε0
Ex (t) (30)
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Propagation in a lossy dielectric medium

using the change of variables,

∂Ẽx (t)
∂t

= − 1
εr
√
µ0ε0

∂Hy (t)
∂z

− σ

εr ε0
Ẽx (t) (31)

∂Hy (t)
∂t

= − 1
√
µ0ε0

∂Ẽx (t)
∂t

(32)

governing equations,

Ẽn+1/2
x (k) =

(
1− ∆t · σ

2εr ε0

)
(

1 +
∆t · σ
2εr ε0

) Ẽn−1/2
x (k)−

(
1
2

)
εr

(
1 +

∆t · σ
2εr ε0

)[Hn
y

(
k +

1
2

)
−Hn

y

(
k − 1

2

)]

(33)

Hn+1
y

(
k +

1
2

)
= Hn

y

(
k +

1
2

)
− 1

2

[
Ẽn+1/2

x (k + 1)− Ẽn+1/2
x (k)

]
(34)
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Propagation in a lossy dielectric medium
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Figure 9: Simulation of a propagating sinusoidal wave striking a lossy dielectric material with a
dielectric constant of 4 and a conductivity of 0.04 (S/m). The source is 700 MHz and originates at
cell number 5.
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Reformulation using the flux density

general form of Maxwell’s equations

∂D
∂t

=∇× H (35)

D(ω) = ε0 · ε∗r (ω) · E(ω) (36)

∂H
∂t

= − 1
µ0
∇× E (37)

where D is the electric flux density.

normalizing these equations, using

Ẽ =

√
ε0

µ0
· E (38)

D̃ =

√
1

ε0µ0
· D (39)
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Reformulation using the flux density

which leads to

∂D̃
∂t

=
1

√
ε0µ0
∇× H (40)

D̃(ω) = ε∗r (ω) · Ẽ(ω) (41)

∂H
∂t

= − 1
√
ε0µ0
∇× Ẽ (42)

We have to get D̃(ω) = ε∗r (ω) · Ẽ(ω) into a time-domain difference equation for
implementation into FDTD. We will assume that we are dealing with a lossy dielectric
medium of the form

ε∗r (ω) = εr +
σ

jω · ε0
(43)

substituting the above equation,

D̃(ω) = εr Ẽ(ω) +
σ

jω · ε0
Ẽ(ω) (44)
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Reformulation using the flux density

Fourier theory tells us that 1/(jω) in the frequency domain is integration in the time
domain, so the above equation becomes

D̃(t) = εr Ẽ(t) +
σ

ε0

∫ t

0
Ẽ(t ′)dt ′ (45)

the integral will be approximated as a summation over the time steps ∆t :

D̃n = εr Ẽn +
σ ·∆t
ε0

n∑
i=0

Ẽ i (46)

separating the En term from the rest of the summation:

D̃n = εr Ẽn +
σ ·∆t
ε0

Ẽn +
σ ·∆t
ε0

n−1∑
i=0

Ẽ i (47)
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Reformulation using the flux density

We can calculate En, the current value of E , from the current value of D and previous
values of E .

Ẽn =

D̃n − σ ·∆t
ε0

n−1∑
i=0

Ẽ i

εr +
σ ·∆t
ε0

(48)

governing equations,

D̃n+1/2(k) = D̃n−1/2(k)− 1
2

[
Hn

y

(
k +

1
2

)
− Hn

y

(
k − 1

2

)]
(49)

Hn+1
y

(
k +

1
2

)
= Hn

y

(
k +

1
2

)
− 1

2

[
Ẽn+1/2

x (k + 1)− Ẽn+1/2
x (k)

]
(50)
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Calculating the frequency domain output

To calculate the E field distribution at every point in a dielectric medium subject to
illumination at various frequencies.

The Fourier transform of the E field E(t) at a frequency f1 is calculated by the equation

E(f1) =

∫ tT

0
E(t) · e−j2π·f1·t dt (51)

the lower limit of the integral is at 0 because the FDTD program assumes all causal
functions and the upper limit is tT , the time at which the FDTD iteration is halted.

Rewriting Eq. (51) in a finite-difference form,

E(f1) =
T∑

n=0

E(n ·∆t) · e−j2π·f1(n·∆t) (52)

where T is the number of iterations and ∆t is the time step, so tT = ∆t · T
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Calculating the frequency domain output

Equation (52) can be divided into its real and imaginary parts

E(f1) =
T∑

n=0

E(n ·∆t) · cos (2πf1 ·∆t · n)

−j
T∑

n=0

E(n ·∆t) · sin (2πf1 ·∆t · n)

(53)
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