123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- /*
- * arch/alpha/lib/ev6-clear_user.S
- * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
- *
- * Zero user space, handling exceptions as we go.
- *
- * We have to make sure that $0 is always up-to-date and contains the
- * right "bytes left to zero" value (and that it is updated only _after_
- * a successful copy). There is also some rather minor exception setup
- * stuff.
- *
- * NOTE! This is not directly C-callable, because the calling semantics
- * are different:
- *
- * Inputs:
- * length in $0
- * destination address in $6
- * exception pointer in $7
- * return address in $28 (exceptions expect it there)
- *
- * Outputs:
- * bytes left to copy in $0
- *
- * Clobbers:
- * $1,$2,$3,$4,$5,$6
- *
- * Much of the information about 21264 scheduling/coding comes from:
- * Compiler Writer's Guide for the Alpha 21264
- * abbreviated as 'CWG' in other comments here
- * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
- * Scheduling notation:
- * E - either cluster
- * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
- * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
- * Try not to change the actual algorithm if possible for consistency.
- * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
- * From perusing the source code context where this routine is called, it is
- * a fair assumption that significant fractions of entire pages are zeroed, so
- * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
- * ASSUMPTION:
- * The believed purpose of only updating $0 after a store is that a signal
- * may come along during the execution of this chunk of code, and we don't
- * want to leave a hole (and we also want to avoid repeating lots of work)
- */
- /* Allow an exception for an insn; exit if we get one. */
- #define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda $31, $exception-99b($31); \
- .previous
- .set noat
- .set noreorder
- .align 4
- .globl __do_clear_user
- .ent __do_clear_user
- .frame $30, 0, $28
- .prologue 0
- # Pipeline info : Slotting & Comments
- __do_clear_user:
- and $6, 7, $4 # .. E .. .. : find dest head misalignment
- beq $0, $zerolength # U .. .. .. : U L U L
- addq $0, $4, $1 # .. .. .. E : bias counter
- and $1, 7, $2 # .. .. E .. : number of misaligned bytes in tail
- # Note - we never actually use $2, so this is a moot computation
- # and we can rewrite this later...
- srl $1, 3, $1 # .. E .. .. : number of quadwords to clear
- beq $4, $headalign # U .. .. .. : U L U L
- /*
- * Head is not aligned. Write (8 - $4) bytes to head of destination
- * This means $6 is known to be misaligned
- */
- EX( ldq_u $5, 0($6) ) # .. .. .. L : load dst word to mask back in
- beq $1, $onebyte # .. .. U .. : sub-word store?
- mskql $5, $6, $5 # .. U .. .. : take care of misaligned head
- addq $6, 8, $6 # E .. .. .. : L U U L
- EX( stq_u $5, -8($6) ) # .. .. .. L :
- subq $1, 1, $1 # .. .. E .. :
- addq $0, $4, $0 # .. E .. .. : bytes left -= 8 - misalignment
- subq $0, 8, $0 # E .. .. .. : U L U L
- .align 4
- /*
- * (The .align directive ought to be a moot point)
- * values upon initial entry to the loop
- * $1 is number of quadwords to clear (zero is a valid value)
- * $2 is number of trailing bytes (0..7) ($2 never used...)
- * $6 is known to be aligned 0mod8
- */
- $headalign:
- subq $1, 16, $4 # .. .. .. E : If < 16, we can not use the huge loop
- and $6, 0x3f, $2 # .. .. E .. : Forward work for huge loop
- subq $2, 0x40, $3 # .. E .. .. : bias counter (huge loop)
- blt $4, $trailquad # U .. .. .. : U L U L
- /*
- * We know that we're going to do at least 16 quads, which means we are
- * going to be able to use the large block clear loop at least once.
- * Figure out how many quads we need to clear before we are 0mod64 aligned
- * so we can use the wh64 instruction.
- */
- nop # .. .. .. E
- nop # .. .. E ..
- nop # .. E .. ..
- beq $3, $bigalign # U .. .. .. : U L U L : Aligned 0mod64
- $alignmod64:
- EX( stq_u $31, 0($6) ) # .. .. .. L
- addq $3, 8, $3 # .. .. E ..
- subq $0, 8, $0 # .. E .. ..
- nop # E .. .. .. : U L U L
- nop # .. .. .. E
- subq $1, 1, $1 # .. .. E ..
- addq $6, 8, $6 # .. E .. ..
- blt $3, $alignmod64 # U .. .. .. : U L U L
- $bigalign:
- /*
- * $0 is the number of bytes left
- * $1 is the number of quads left
- * $6 is aligned 0mod64
- * we know that we'll be taking a minimum of one trip through
- * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
- * We are _not_ going to update $0 after every single store. That
- * would be silly, because there will be cross-cluster dependencies
- * no matter how the code is scheduled. By doing it in slightly
- * staggered fashion, we can still do this loop in 5 fetches
- * The worse case will be doing two extra quads in some future execution,
- * in the event of an interrupted clear.
- * Assumes the wh64 needs to be for 2 trips through the loop in the future
- * The wh64 is issued on for the starting destination address for trip +2
- * through the loop, and if there are less than two trips left, the target
- * address will be for the current trip.
- */
- nop # E :
- nop # E :
- nop # E :
- bis $6,$6,$3 # E : U L U L : Initial wh64 address is dest
- /* This might actually help for the current trip... */
- $do_wh64:
- wh64 ($3) # .. .. .. L1 : memory subsystem hint
- subq $1, 16, $4 # .. .. E .. : Forward calculation - repeat the loop?
- EX( stq_u $31, 0($6) ) # .. L .. ..
- subq $0, 8, $0 # E .. .. .. : U L U L
- addq $6, 128, $3 # E : Target address of wh64
- EX( stq_u $31, 8($6) ) # L :
- EX( stq_u $31, 16($6) ) # L :
- subq $0, 16, $0 # E : U L L U
- nop # E :
- EX( stq_u $31, 24($6) ) # L :
- EX( stq_u $31, 32($6) ) # L :
- subq $0, 168, $5 # E : U L L U : two trips through the loop left?
- /* 168 = 192 - 24, since we've already completed some stores */
- subq $0, 16, $0 # E :
- EX( stq_u $31, 40($6) ) # L :
- EX( stq_u $31, 48($6) ) # L :
- cmovlt $5, $6, $3 # E : U L L U : Latency 2, extra mapping cycle
- subq $1, 8, $1 # E :
- subq $0, 16, $0 # E :
- EX( stq_u $31, 56($6) ) # L :
- nop # E : U L U L
- nop # E :
- subq $0, 8, $0 # E :
- addq $6, 64, $6 # E :
- bge $4, $do_wh64 # U : U L U L
- $trailquad:
- # zero to 16 quadwords left to store, plus any trailing bytes
- # $1 is the number of quadwords left to go.
- #
- nop # .. .. .. E
- nop # .. .. E ..
- nop # .. E .. ..
- beq $1, $trailbytes # U .. .. .. : U L U L : Only 0..7 bytes to go
- $onequad:
- EX( stq_u $31, 0($6) ) # .. .. .. L
- subq $1, 1, $1 # .. .. E ..
- subq $0, 8, $0 # .. E .. ..
- nop # E .. .. .. : U L U L
- nop # .. .. .. E
- nop # .. .. E ..
- addq $6, 8, $6 # .. E .. ..
- bgt $1, $onequad # U .. .. .. : U L U L
- # We have an unknown number of bytes left to go.
- $trailbytes:
- nop # .. .. .. E
- nop # .. .. E ..
- nop # .. E .. ..
- beq $0, $zerolength # U .. .. .. : U L U L
- # $0 contains the number of bytes left to copy (0..31)
- # so we will use $0 as the loop counter
- # We know for a fact that $0 > 0 zero due to previous context
- $onebyte:
- EX( stb $31, 0($6) ) # .. .. .. L
- subq $0, 1, $0 # .. .. E .. :
- addq $6, 1, $6 # .. E .. .. :
- bgt $0, $onebyte # U .. .. .. : U L U L
- $zerolength:
- $exception: # Destination for exception recovery(?)
- nop # .. .. .. E :
- nop # .. .. E .. :
- nop # .. E .. .. :
- ret $31, ($28), 1 # L0 .. .. .. : L U L U
- .end __do_clear_user
|