123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- module DivMod where
- -- From examples/simple-lib
- open import Lib.Vec
- open import Lib.Nat
- open import Lib.Id
- open import Lib.Logic
- open import Lib.Fin
- -- Certified implementation of division and modulo
- module Direct where
- data DivMod : Nat -> Nat -> Set where
- dm : forall {b} q (r : Fin b) -> DivMod (toNat r + q * b) b
- getQ : forall {a b} -> DivMod a b -> Nat
- getQ (dm q _) = q
- getR : forall {a b} -> DivMod a b -> Nat
- getR (dm _ r) = toNat r
- divModˢ : (a b : Nat) -> DivMod a (suc b)
- divModˢ zero b = dm 0 zero
- divModˢ (suc a) b with divModˢ a b
- divModˢ (suc ._) b | dm q r with maxView r
- divModˢ (suc ._) b | dm q .(fromNat b) | theMax
- with toNat (fromNat b) | lem-toNat-fromNat b
- ... | .b | refl = dm {suc b} (suc q) zero
- divModˢ (suc ._) b | dm q .(weaken i) | notMax i
- with toNat (weaken i) | lem-toNat-weaken i
- ... | .(toNat i) | refl = dm q (suc i)
- divMod : (a b : Nat){nz : NonZero b} -> DivMod a b
- divMod a zero {}
- divMod a (suc b) = divModˢ a b
- -- Let's try the inductive version. Less obvious that this one is correct.
- module Inductive where
- data DivMod : Nat -> Nat -> Set where
- dmZ : forall {b} (i : Fin b) -> DivMod (toNat i) b
- dmS : forall {a b} -> DivMod a b -> DivMod (b + a) b
- getQ : forall {a b} -> DivMod a b -> Nat
- getQ (dmZ _) = 0
- getQ (dmS d) = suc (getQ d)
- getR : forall {a b} -> DivMod a b -> Nat
- getR (dmZ r) = toNat r
- getR (dmS d) = getR d
- data BoundView (n : Nat) : Nat -> Set where
- below : (i : Fin n) -> BoundView n (toNat i)
- above : forall a -> BoundView n (n + a)
- boundView : (a b : Nat) -> BoundView a b
- boundView zero b = above b
- boundView (suc a) zero = below zero
- boundView (suc a) (suc b) with boundView a b
- boundView (suc a) (suc .(toNat i)) | below i = below (suc i)
- boundView (suc a) (suc .(a + k)) | above k = above k
- infix 4 _≤_
- data _≤_ : Nat -> Nat -> Set where
- leqZ : forall {n} -> zero ≤ n
- leqS : forall {n m} -> n ≤ m -> suc n ≤ suc m
- ≤-suc : forall {a b} -> a ≤ b -> a ≤ suc b
- ≤-suc leqZ = leqZ
- ≤-suc (leqS p) = leqS (≤-suc p)
- plus-≤ : forall a {b c} -> a + b ≤ c -> b ≤ c
- plus-≤ zero p = p
- plus-≤ (suc a) (leqS p) = ≤-suc (plus-≤ a p)
- ≤-refl : forall {a} -> a ≤ a
- ≤-refl {zero} = leqZ
- ≤-refl {suc n} = leqS ≤-refl
- -- Recursion over a bound on a (needed for termination).
- divModˢ : forall {size} a b -> a ≤ size -> DivMod a (suc b)
- divModˢ a b prf with boundView (suc b) a
- divModˢ .(toNat r) b _ | below r = dmZ r
- divModˢ .(suc b + k) b (leqS prf) | above k = dmS (divModˢ k b (plus-≤ b prf))
- divMod : forall a b {nz : NonZero b} -> DivMod a b
- divMod a zero {}
- divMod a (suc b) = divModˢ a b ≤-refl
- -- We ought to prove that the inductive version behaves the same as the
- -- direct version... but that's more work than we're willing to spend.
- open Inductive
- _div_ : (a b : Nat){nz : NonZero b} -> Nat
- _div_ a b {nz} = getQ (divMod a b {nz})
- _mod_ : (a b : Nat){nz : NonZero b} -> Nat
- _mod_ a b {nz} = getR (divMod a b {nz})
|