123456789101112131415161718192021 |
- module EqProof
- { A : Set }
- ( _==_ : A -> A -> Set )
- (refl : {x : A} -> x == x)
- (trans : {x y z : A} -> x == y -> y == z -> x == z)
- where
- infix 3 eqProof>_
- infixl 2 _===_
- infix 3 _by_
- eqProof>_ : (x : A) -> x == x
- eqProof> x = refl
- _===_ : {x y z : A} -> x == y -> y == z -> x == z
- xy === yz = trans xy yz
- _by_ : {x : A}(y : A) -> x == y -> x == y
- y by eq = eq
|