12345678910111213141516171819202122 |
- module Chain
- { A : Set }
- (_==_ : A -> A -> Set )
- (refl : (x : A) -> x == x)
- (trans : (x y z : A) -> x == y -> y == z -> x == z)
- where
- infix 2 chain>_
- infixl 2 _===_
- infix 3 _by_
- chain>_ : (x : A) -> x == x
- chain> x = refl _
- _===_ : {x y z : A} -> x == y -> y == z -> x == z
- xy === yz = trans _ _ _ xy yz
- _by_ : {x : A}(y : A) -> x == y -> x == y
- y by eq = eq
|