123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- module IIDg where
- open import LF
- -- Codes for indexed inductive types
- data OPg (I : Set) : Set1 where
- ι : I -> OPg I
- σ : (A : Set)(γ : A -> OPg I) -> OPg I
- δ : (H : Set)(i : H -> I)(γ : OPg I) -> OPg I
- -- The top-level structure of values in an IIDg
- Args : {I : Set}(γ : OPg I)(U : I -> Set) -> Set
- Args (ι _) U = One
- Args (σ A γ) U = A × \a -> Args (γ a) U
- Args (δ H i γ) U = ((x : H) -> U (i x)) × \_ -> Args γ U
- -- The index of a value in an IIDg
- Index : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> I
- Index (ι i) U _ = i
- Index (σ A γ) U < a | b > = Index (γ a) U b
- Index (δ _ _ γ) U < _ | b > = Index γ U b
- -- The assumptions of a particular inductive occurrence.
- IndArg : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> Set
- IndArg (ι _) U _ = Zero
- IndArg (σ A γ) U < a | b > = IndArg (γ a) U b
- IndArg (δ H i γ) U < _ | b > = H + IndArg γ U b
- -- The index of an inductive occurrence.
- IndIndex : {I : Set}(γ : OPg I)(U : I -> Set)(a : Args γ U) -> IndArg γ U a -> I
- IndIndex (ι _) U _ ()
- IndIndex (σ A γ) U < a | b > h = IndIndex (γ a) U b h
- IndIndex (δ A i γ) U < g | b > (inl h) = i h
- IndIndex (δ A i γ) U < g | b > (inr h) = IndIndex γ U b h
- -- An inductive occurrence.
- Ind : {I : Set}(γ : OPg I)(U : I -> Set)(a : Args γ U)(h : IndArg γ U a) -> U (IndIndex γ U a h)
- Ind (ι _) U _ ()
- Ind (σ A γ) U < a | b > h = Ind (γ a) U b h
- Ind (δ H i γ) U < g | b > (inl h) = g h
- Ind (δ H i γ) U < _ | b > (inr h) = Ind γ U b h
- -- The type of induction hypotheses.
- IndHyp : {I : Set}(γ : OPg I)(U : I -> Set)(C : (i : I) -> U i -> Set)(a : Args γ U) -> Set
- IndHyp γ U C a = (hyp : IndArg γ U a) -> C (IndIndex γ U a hyp) (Ind γ U a hyp)
- -- Large induction hypostheses.
- IndHyp₁ : {I : Set}(γ : OPg I)(U : I -> Set)(C : (i : I) -> U i -> Set1)(a : Args γ U) -> Set1
- IndHyp₁ γ U C a = (hyp : IndArg γ U a) -> C (IndIndex γ U a hyp) (Ind γ U a hyp)
|