123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- module Data.Permutation where
- {-
- open import Prelude
- open import Data.Fin as Fin hiding (_==_; _<_)
- open import Data.Nat
- open import Data.Vec
- open import Logic.Identity
- open import Logic.Base
- import Logic.ChainReasoning
- -- What is a permutation?
- -- Answer 1: A bijection between Fin n and itself
- data Permutation (n : Nat) : Set where
- permutation :
- (π π⁻¹ : Fin n -> Fin n) ->
- (forall {i} -> π (π⁻¹ i) ≡ i) ->
- Permutation n
- module Permutation {n : Nat}(P : Permutation n) where
- private
- π' : Permutation n -> Fin n -> Fin n
- π' (permutation x _ _) = x
- π⁻¹' : Permutation n -> Fin n -> Fin n
- π⁻¹' (permutation _ x _) = x
- proof : (P : Permutation n) -> forall {i} -> π' P (π⁻¹' P i) ≡ i
- proof (permutation _ _ x) = x
- π : Fin n -> Fin n
- π = π' P
- π⁻¹ : Fin n -> Fin n
- π⁻¹ = π⁻¹' P
- module Proofs where
- ππ⁻¹-id : {i : Fin n} -> π (π⁻¹ i) ≡ i
- ππ⁻¹-id = proof P
- open module Chain = Logic.ChainReasoning.Poly.Homogenous _≡_ (\x -> refl) (\x y z -> trans)
- π⁻¹-inj : (i j : Fin n) -> π⁻¹ i ≡ π⁻¹ j -> i ≡ j
- π⁻¹-inj i j h =
- chain> i
- === π (π⁻¹ i) by sym ππ⁻¹-id
- === π (π⁻¹ j) by cong π h
- === j by ππ⁻¹-id
- -- Generalise
- lem : {n : Nat}(f g : Fin n -> Fin n)
- -> (forall i -> f (g i) ≡ i)
- -> (forall i -> g (f i) ≡ i)
- lem {zero} f g inv ()
- lem {suc n} f g inv i = ?
- where
- gz≠gs : {i : Fin n} -> g fzero ≢ g (fsuc i)
- gz≠gs {i} gz=gs = fzero≠fsuc $
- chain> fzero
- === f (g fzero) by sym (inv fzero)
- === f (g (fsuc i)) by cong f gz=gs
- === fsuc i by inv (fsuc i)
- z≠f-thin-gz : {i : Fin n} -> fzero ≢ f (thin (g fzero) i)
- z≠f-thin-gz {i} z=f-thin-gz = ?
- -- f (g fzero)
- -- = fzero
- -- = f (thin (g fzero) i)
- g' : Fin n -> Fin n
- g' j = thick (g fzero) (g (fsuc j)) gz≠gs
- f' : Fin n -> Fin n
- f' j = thick fzero (f (thin (g fzero) j)) ?
- g'f' : forall j -> g' (f' j) ≡ j
- g'f' = lem {n} f' g' ?
- π⁻¹π-id : forall {i} -> π⁻¹ (π i) ≡ i
- π⁻¹π-id = ?
- -- Answer 2: A Vec (Fin n) n with no duplicates
- {-
- infixr 40 _◅_ _↦_,_
- infixr 20 _○_
- data Permutation : Nat -> Set where
- ε : Permutation zero
- _◅_ : {n : Nat} -> Fin (suc n) -> Permutation n -> Permutation (suc n)
- _↦_,_ : {n : Nat}(i j : Fin (suc n)) -> Permutation n -> Permutation (suc n)
- fzero ↦ j , π = j ◅ π
- fsuc i ↦ j , j' ◅ π = thin j j' ◅ i ↦ ? , π
- indices : {n : Nat} -> Permutation n -> Vec (Fin n) n
- indices ε = []
- indices (i ◅ π) = i :: map (thin i) (indices π)
- -- permute (i ◅ π) xs with xs [!] i where
- -- permute₁ (i ◅ π) .(insert i x xs) (ixV x xs) = x :: permute π xs
- permute : {n : Nat}{A : Set} -> Permutation n -> Vec A n -> Vec A n
- permute (i ◅ π) xs = permute' π i xs (xs [!] i)
- where
- permute' : {n : Nat}{A : Set} -> Permutation n -> (i : Fin (suc n))(xs : Vec A (suc n)) ->
- IndexView i xs -> Vec A (suc n)
- permute' π i .(insert i x xs') (ixV x xs') = x :: permute π xs'
- delete : {n : Nat} -> Fin (suc n) -> Permutation (suc n) -> Permutation n
- delete fzero (j ◅ π) = π
- delete {zero} (fsuc ()) _
- delete {suc _} (fsuc i) (j ◅ π) = ? ◅ delete i π
- identity : {n : Nat} -> Permutation n
- identity {zero } = ε
- identity {suc n} = fzero ◅ identity
- _⁻¹ : {n : Nat} -> Permutation n -> Permutation n
- ε ⁻¹ = ε
- (i ◅ π) ⁻¹ = ?
- _○_ : {n : Nat} -> Permutation n -> Permutation n -> Permutation n
- ε ○ π₂ = ε
- i ◅ π₁ ○ π₂ = (indices π₂ ! i) ◅ (π₁ ○ delete i π₂)
- -}
- -}
|