\documentclass[draft]{article}

\usepackage{agda}

\begin{document}

Lemma~\ref{code:B} below shows that $\AgdaPrimitiveType{Set1}$ is inhabited.
%
A preliminary definition:
%
\begin{code}[number]
  A : Set1
  A = Set
\end{code}
%
Lemma~\ref{code:B2}:
%
\begin{code}[number=code:B,number=code:B2]
  B : Set1
  B = A
\end{code}

\begin{code}[hide,number=code:Invisible]
  Invisible : Set1
  Invisible = Set
\end{code}

Numbers are not generated for inline code, like
%
\begin{code}[inline*,number=code:Inline1]
  Inline1 = Set
\end{code}
%
and
%
\begin{code}[inline,number=code:Inline2]
  Inline2 = Set
\end{code}.

A wide piece of code:
%
\begin{code}[number]
  Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa = Set
\end{code}

\end{document}