
Ops Scripting w. Bash: Frequency 3
Tracking Frequency in BASH (Bourne Again Shell): Part III

Joaquin Menchaca Follow

May 16 · 6 min read

This article shows how to do a serial pipeline style with loop

constructs and a a survey of popular command line tools often used

with shell programming.

Previously, I detailed how to process a file using conditional loop or a

collection loop in a procedural way. In each cycle of the loop, we went

through these steps:

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

1 of 13 10/10/19, 3:12 PM

slice off the shell string1.

verify if shell string is valid2.

create an entry in the associative array with the current count3.

For the serial pipeline style, we’ll run through the process in this

fashion:

filter_valid_lines | slice_7th_column | increment_count_entry

Previous Articles

The Problem

Ops Scripting w. BASH: Frequency

Tracking Frequency in BASH (Bourne Again Shell): Part I

medium.com

Procedural Solutions Way

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

2 of 13 10/10/19, 3:12 PM

Ops Scripting w. Bash: Frequency 2

Tracking Frequency in BASH (Bourne Again Shell): Part II

medium.com

The Solutions for the Serial Pipeline Way
For these solutions, we will use a sub-shell to pre-process the lines,

and then send valid list of shells directly to the while loop with <<<

operator:

while read -r SHELL; do
process_shell_entry $SHELL

done <<< $(create_list_of_valid_shells)

For more information on this, see why subshell below.

Solution 3: Splitting with IFS and Read

In this solution, we use the internal input-field-separator IFS in

conjunction with read to split each line into an array, where we slice

off the shell column.

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

3 of 13 10/10/19, 3:12 PM

Bash read split with Grep Filter

A reverse grep (grep -v) is used to filter out invalid lines that do not

have a shell specified. If we wanted to stay pure-shell, we could do

the same thing in BASH:

Pure BASH Solution

Solution 4: Splitting with cut command

The cut command can remove sections form each line of a file (or

files). We specify the 7th column; unlike an array, the count of

view raw

1

2

3

4

5

6

7

8

9

frequency_3.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)) done <<< \

 $(

 grep -v ':$' passwd |

 while IFS=: read -ra ITEMS; do

 echo ${ITEMS[6]};

 done

)

view raw

1

2

3

4

5

6

7

8

9

10

frequency_3b.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

 $(while read LINE; do

 [[$LINE =~ :$]] || echo $LINE

 done < etc/passwd |

 while IFS=: read -ra LINE; do

 echo ${LINE[6]}

 done

)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

4 of 13 10/10/19, 3:12 PM

columns starts at 1.

Cut with Grep Filter Solution

Solution 5: Splitting with sed

A popular tool in Linux and Unix is sed (stream editor), which has a

substitute ability that we can use to only substitute the part we are

interested in:

sed 's/pattern/replacement/' input_file

We can use a substitute operation to extract out the shell, which the

part after the colon:

view raw

1

2

3

4

5

6

7

frequency_4.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

$(

 grep -v ':$' passwd |

 cut -d: -f7

)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

5 of 13 10/10/19, 3:12 PM

Sed Substitute with Grep Filter Solution

In our substitute, we are doing a group match with the () . We extract

our group, which in this case is everything after the colon : , and

then replace the whole string with only that group using \1 .

Given that sed does more than substitute, being a full text editor

driven by commands, we could also delete strings that are invalid,

foregoing the need for grep:

Sed Substitute with Sed Delete Filter Solution

The above demonstrates both substitute and delete commands for

sed .

Solution 6: Splittling with awk command

view raw

1

2

3

4

5

6

7

frequency_5a.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

$(

 grep -v ':$' passwd |

 sed -E 's/^.*:(.*)$/\1/'

)

view raw

1

2

3

4

frequency_5b.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

 $(sed -E -e 's/^.*:(.*)$/\1/' -e '/^$/d' passwd)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

6 of 13 10/10/19, 3:12 PM

The awk tool is extremely popular for working with field separated

files. With awk we can print out any column:

awk '{print $5}' input_file # print's 5th field

This is the awk solution below:

Awk with Grep Filter Solution

In this example, we use a special variable in awk called NF , which

represents the number of fields. The awk tool will slice off whatever is

the last field using NF in this way.

As awk is a rather robust tool, we can conditionally match for each

line to verify we have a valid line, so there’s no need for grep in this

case, as matching is built into awk :

view raw

1

2

3

4

5

6

7

8

frequency_6a.sh hosted with ❤ by GitHub

declare -A COUNTS

Process Input

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

 $(

 grep -v ':$' passwd |

 awk -F: '{ print $NF }'

)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

7 of 13 10/10/19, 3:12 PM

Awk with Awk Match Filter Solution

Our negative match pattern with !/:$/ are all lines that do not end

with a colon : . We can do a positive match with /[^:]$/ , which

would match lines ending in non-colon characters.

Solution 7: Splitting with grep only-match command

The grep match tool has the ability to only print out the matched

content, instead of the whole string when we use the only-match

option of -o . This will extract only the shell portion of the string.

Grep with Grep Filter Solution

Soluton 8: Splitting with perl command

The perl tool is a robust and fast tool to do kung-fu with strings. You

can use Perl in command line mode with auto-splitting -a enabled,

view raw

1

2

3

4

frequency_6b.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

 $(awk -F: '!/:$/{ print $NF }' passwd)

view raw

1

2

3

4

5

6

7

frequency_7.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

 $(

 grep -v ':$' passwd |

 grep -o '[^:]*$'

)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

8 of 13 10/10/19, 3:12 PM

and then print out the column using the Perl’s built-in $F variable.

Perl with Grep Filter Solution

Like previous solutions, grep is pre-processing the lines to filter out

invalid lines, but perl can do this by itself as well:

Perl with Perl Filter Solution

In addition to auto-splitting mode with -a , which is similar to awk ,

you can also simulate other tools like grep and sed to extract out the

final shell column. Here’s a summary of alternatives that can be used

in the sub-shell:

##################### awk-like #####################

view raw

1

2

3

4

5

6

7

frequency_8a.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do ((COUNTS[${SHELL}]++)); done <<< \

$(

 grep -v ':$' passwd |

 perl -naF':' -e 'print $F[6]'

)

view raw

1

2

3

4

5

frequency_8b.sh hosted with ❤ by GitHub

declare -A COUNTS

while read -r SHELL; do

((COUNTS[${SHELL}]++))

done <<< $(perl -naF':' -e 'print $F[6] if $F[6] !~ /^$/' passwd)

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

9 of 13 10/10/19, 3:12 PM

perl auto-split w/ grep filter
grep -v ':$' passwd | perl -naF':' -e 'print $F[6]'

perl auto-split w perl match filter
perl -naF':' -e 'print $F[6] if $F[6] !~ /^$/' passwd

############## grep-like with group-match ##############
perl group-match w/ grep filter
grep -v ':$' passwd | perl -ne 'print $1 if /([^:]*)$/'

perl group-match w/ perl match filter
perl -ne 'print $1 if /([^:]*)$/ and $1 !~ /^$/' passwd

##################### sed-like #####################
perl substitute + group-match w/ grep filter
grep -v ':$' passwd | perl -pne 's/.*:([^:].*)$/$1/;'

perl substitute + group-match and substitute to filter
perl -pne 's/.*:([^:].*)$/$1/ and s/^\s*$//' passwd

Why SubShell?
This is an excellent question. The current pattern above is to do the

following:

while read -r VAR; do process $VAR; done <<< $(cmd < file |
cmd)

Would it not be simpler to just do something like:

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

10 of 13 10/10/19, 3:12 PM

cmd < file | cmd | while read -r VAR; do process $VAR; done

The second snippet is more intuitive, but unfortunately this will not

work in our case. Specifically, when we leave the conditional loop, we

lose any variables we were saving.

Pipe to a Loop

When you do a command | loop , you fork a sub-process with the loop,

which does a fork/exec command and links the standard output of

the command to the standard input of loop process. Unfortunately,

variable changes in the loop are force scoped to just the loop, and

thus will be lost outside of the loop.

Eval to a Loop

When you do a loop <<< $(command) , all of the standard output from

the command is gathered into a buffer, then the loop will use the

buffer as loop input. The subshell with $(command) is run at eval and

standard out is substituted in-place of the $(command) , then the

execution of the statement happens. Thus, your variables set inside

the loop are preserved outside of the loop.

Solution Example with For Loop

Another way to use subshells if this format looks too funky, is to go

back to a for loop and split the lines using this construct:

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

11 of 13 10/10/19, 3:12 PM

for VAR in $(cmd < file); do process $VAR; done

Below is an example solution for using the for loop:

We can use the default IFS , as this will split that buffer by spaces,

tabs, and new lines, and so if we have an empty shell, it will be

skipped. We therefore no longer need a filter with grep , as it is

implicit with the default separator.

The Conclusion
So these solutions are essentially a survey of popular tools that can be

used for processing strings as an alternative to the internal splitting

mechanism with IFS .

Takeways for looping constructs:

pipe into a command from a string using <<< $(command)

limitations of command | while -r VAR construct

view raw

1

2

3

4

5

frequency_9.sh hosted with ❤ by GitHub

declare -A COUNTS

for SHELL in $(awk -F: '{ print $NF }' passwd); do

((COUNTS[${SHELL}]++))

done

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

12 of 13 10/10/19, 3:12 PM

alternative loop construct with for VAR in $(command) construct

default IFS will filter empty lines as separator is space, tab, and

newlines.

Takeaways on methods to extracting a sub-string from text:

using splitting from internal IFS variable in subshell.

using splitting with an external tool: cut , awk , perl

using substitute with group match with an external tool: sed ,

perl

using group match or only-match with an external tool: grep ,

perl

Tool Specific Takeaways:

grep can match lines or filter lines or a slice columns with regex

awk can match as well as slice columns as well as other features

sed can substitute and delete as well as other features

perl can match, group-match, substitute, and slice columns.

Ops Scripting w. Bash: Frequency 3 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

13 of 13 10/10/19, 3:12 PM

