
Ops Scripting w. BASH: Frequency
Tracking Frequency in BASH (Bourne Again Shell): Part I

Joaquin Menchaca Follow

May 15 · 3 min read

Operations oriented roles, almost always require skills in automation

and scripting with shell programming. These days with the ubiquity

of Linux and GNU command line tools, GNU Bash has become

ubiquitous.

Bash combined with command line tools, is regulated for small

automation chores, data structures are supports strings, integers, and

arrays. However, starting with Bash 4, you can use more advanced

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

1 of 8 10/10/19, 3:10 PM

data structures like associative arrays (hashes, maps, or

dictionaries) to create data structures that are used for algorithms

like tracking frequency.

This problem and later solutions, show how to use a Bash associative

array to track frequency, and along the way, show some cool tricks

that you can use with Bash.

But first you need to make sure Bash 4 or higher is available on your

system…

Getting Bash 4+
If you have a recent Linux distro, such as Debian, Ubuntu, CentOS, a

current version of Bash 5 is already installed.

macOS

Apple’s macOS (aka Mac OS X) comes a very old 15-year old version

of Bash. With Homebrew package manager, you can get a recent

version of Bash:

brew install bash
sudo bash -c 'echo /usr/local/bin/bash >> /etc/shells'
chsh -s /usr/local/bin/bash

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

2 of 8 10/10/19, 3:10 PM

Windows

On Windows 10, we can use MSYS2 (Minimal System 2) that comes

with a recent version of Bash. You can install MSYS2 with the

package manager Chocolatey from either a command shell

(cmd.exe) or PowerShell (powershell.exe) in Administrative mode:

choco install msys2

The Problem
The goal of this exercise is to print a summary of shell usage on a

system. For this exercise, we’ll do it in two parts:

Build a data structure containing the shell counts, called COUNTS

from a supplied local password file ./passwd .

1.

Given the shell counts data structure COUNTS , produce a report.2.

The Data
Here’s the passwd file you will use for this exercise:

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

3 of 8 10/10/19, 3:10 PM

passwd

The Output
When generating a report, the output should look like this:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

libuuid:x:100:101::/var/lib/libuuid:

syslog:x:101:104::/home/syslog:/bin/false

messagebus:x:102:106::/var/run/dbus:/bin/false

landscape:x:103:109::/var/lib/landscape:/bin/false

sshd:x:104:65534::/var/run/sshd:/usr/sbin/nologin

pollinate:x:105:1::/var/cache/pollinate:/bin/false

vagrant:x:1000:1000::/home/vagrant:/bin/bash

colord:x:106:112:colord colour management daemon,,,:/var/lib/colord:/bin/false

statd:x:107:65534::/var/lib/nfs:/bin/false

puppet:x:108:114:Puppet configuration management daemon,,,:/var/lib/puppet:/bin/false

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

4 of 8 10/10/19, 3:10 PM

Shell Summary Report:
==
Shell # of Users
----------------- ------------
/bin/bash 3 users
/bin/false 7 users
/bin/sync 1 users
/usr/sbin/nologin 17 users

The Code
Here is sample code to get you started:

Code Notes
These are some of the techniques used in the code above.

Formatted Output

view raw

1

2

3

4

5

6

7

8

9

10

11

frequency_0.sh hosted with by GitHub

#!/usr/bin/env bash

declare -A COUNTS

>> YOUR SOLUTION HERE <<

printf "\nShell Summmary Report:\n%s\n" $(printf '=%.0s' {1..50})

printf "%-17s %s\n" "Shell" "# of Users"

printf "%-17s %s\n" $(printf '%.0s-' {1..17}) $(printf '%.0s-' {1..12})

for SHELL in "${!COUNTS[@]}"; do

printf "%-17s %3d users\n" ${SHELL} ${COUNTS[${SHELL}]}

done

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

5 of 8 10/10/19, 3:10 PM

We printf command (see printf), which behaves like the

C-Language counterpart:

printf FORMATTED_STRING STRING1 STRING2 STRING3
printf "%s %s %s\n" STRING1 STRING2 STRING3

Repetition

You can use repetition to print out, a line for example, using this

technique:

printf '=%.0s' {1..10}

This will generate ten equal symbols. This itself can be wrapped into a

sub-shell $() or `` it is needs to be concatenated with another

string.

Enumerating Keys

The keys and values of an associative array in Bash can be

enumerated with this notation:

KEYS = "${!ASSOC_ARRAY[@]}"
VALUES = "${ASSOC_ARRAY[@]}"

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

6 of 8 10/10/19, 3:10 PM

If you put these into a subshell, you then sort the keys.

SORTED_KEYS = $(echo ${![ASSOC_ARRAY[@]} | sort)

Referencing a Value

You can extract a value given a key like this:

VALUE = ${ASSOC_ARRAY[$KEY]}

Next Article

Ops Scripting w. Bash: Frequency 2

Tracking Frequency in BASH (Bourne Again Shell): Part II

medium.com

The Conclusion
For now, I’ll just present the problem, and next article I will present

some solutions.

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

7 of 8 10/10/19, 3:10 PM

With the sample code, you can get the following takeaways for Bash

Creating an Associative Array with declare -A

Enumerating Keys and Values from an associative array

Referencing (looking up) an item from the associative array

Formatted output with printf

Repetition using printf "%.0s=" {1..10} trick

Ops Scripting w. BASH: Frequency - Joaquin Men... https://medium.com/@Joachim8675309/ops-script...

8 of 8 10/10/19, 3:10 PM

