
Introduction to CSRF
Charithra Kariyawasam Follow

Sep 28, 2017 · 6 min read

Introduction

CSRF is a type of attack which tricks the victim to do the malicious

task on a victim authenticated webapplication on behalf of attackers

interests. The level of the attack is based upon the level of privileges

that the victim possessed. Because attacker will use the

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

1 of 9 10/10/19, 2:26 PM

authentication that has gained in the current session to do the

malicious task. This is the reason why this attack termed as Session

Riding too. CSRF attack will exploit the concept that if the user is

authenticated all the requests that come from that user must be

originated by the user. The attacker will exploit this concept by

identifying the session cookie of the session and use that to send his

own payload to run on the application.

How CSRF works?

CSRF will only work if the potential victim is authenticated.Using a

CSRF attack an attacker can bypass the authentication process to

enter a web application. When a victim with additional privileges

performs actions that are not accessible to everyone, which is when

CSRF attacks are utilized. Such as online banking scenarios.

There are two main parts to execute a Cross-Site Request Forgery

(CSRF) attack

1) The first part is to trick the victim into clicking a link or loading up

a page. This is normally done through social engineering. By using

social engineering methods attacker will lure the user to click the

link.

2)The second part is to send a “forged” or made up request to the

victim’s browser. This link will send a legitimate-looking request to

the web application. The request will be sent with the values that the

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

2 of 9 10/10/19, 2:26 PM

attacker wants. Apart from them, this request will include any cookies

that the victim has associated with that website.

CSRF scenario

When a request is made to a web application, the browser will check

if it has any Cookies. If the relevant cookies are available, those will

need to be sent with the request. This is done to remember users

interactions with the web site as HTTP is stateless. So they would not

be required to re-authenticate for every page that they visit. If the

website approves of the Cookie being sent and considers the session

as still being valid, an attacker may use CSRF to send requests as if

the victim is sending them.

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

3 of 9 10/10/19, 2:26 PM

As cookies are sent, the web application knows that this victim can

perform certain actions on the website based upon the authorization

level of the victim. Web application will consider these requests as

original. But in reality, the victim would be sending the request on the

attacker’s command.A CSRF attack simply takes advantage of the fact

that the browser sends the Cookie to the web application

automatically with each and every request.

As we have a brief understanding about CSRF, let’s analyze the

following scenarios

Example of a CSRF attack using a GET request

When the malicious link is clicked, the attacker may direct the victim

to their own malicious web application that will execute a script that

will in turn trigger the victim’s browser to send an illegal request. This

request is defined as illegal since the victim is not aware that it is

being sent. But it appears to the web server as if the user sent it.

Because it includes the necessary Cookies that the web server needs

to verify that a victim is who they say they are.

The below example shows a legitimate URL, which will request that

the web application transfers a 100,000 units of the appropriate

currency to User’s account.

http://example.com/transfer?amount=1000000&account=User

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

4 of 9 10/10/19, 2:26 PM

The request will include with it the Cookie for the authenticated user,

so there would be no need to define which account the money will be

transferred from. This means that if a normal user would access this

URL, they would be required to authenticate, so the web application

will know from which account the funds will be withdrawn. Now that

we know how this request can be used for legitimate reasons, we can

figure out a way how to trick a victim into sending the request that

the attacker wants, while authenticated as the victim .

If the web application being exploited is expecting a GET request,

then the attacker can include an tag on their own website, that

instead of linking to an image, it will send a request to the bank’s web

application:

<img src="http://example.com/transfer?amount=1000000&
account=Fred" />

The browser, under normal circumstances, will automatically send

the Cookies that are related to that web application, therefore

allowing the victim to perform a state change on behalf of the

attacker, where the state change is a transfer of funds.

CSRF attack using a POST request

<h1>You Are a Winner!</h1>

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

5 of 9 10/10/19, 2:26 PM

 <form action=”http://example.com/api/account" method=”post”>
 <input type=”hidden” name=”Transaction” value=”withdraw” />
 <input type=”hidden” name=”Amount” value=”1000000" />
 <input type=”submit” value=”Click Me”/>
</form>

A user logs into www.example.com, using forms authentication.1.

The server authenticates the user. The response from the server

includes an authentication cookie.

2.

Without logging out, the user visits a malicious web site. This

malicious site contains the following HTML form. (The form

action posts to the vulnerable site, not to the malicious site. This is

the “cross-site” part of CSRF.)

3.

The user clicks the submit button. The browser includes the

authentication cookie with the request.

4.

The request runs on the server with the user’s authentication

context, and can do anything that an authenticated user is

allowed to do.

5.

Although this example requires the user to click the form button, the

malicious page could just as easily run a script that submits the form

automatically. Moreover, using SSL does not prevent a CSRF attack,

because the malicious site can send an “https://” request.Typically,

CSRF attacks are possible against web sites that use cookies for

authentication, because browsers send all relevant cookies to the

destination web site.

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

6 of 9 10/10/19, 2:26 PM

Preventing CSRF vulnerabilities
Although there have been a variety of proposed CSRF prevention

mechanisms, not all of them are effective in all scenarios. The

following implementations prove to be effective for a variety of web

applications.

Anti-CSRF Tokens

The most popular implementation to prevent Cross-site Request

Forgery (CSRF), is to make use of a token that is associated with a

particular user and can be found as a hidden value in every state

changing form which is present on the web application. This token,

called a CSRF Token or a Synchronizer Token, works as follows:

The client requests an HTML page that contains a form.1.

The server includes two tokens in the response. One token is sent

as a cookie. The other is placed in a hidden form field. The tokens

are generated randomly so that an adversary cannot guess the

values.

2.

When the client submits the form, it must send both tokens back

to the server. The client sends the cookie token as a cookie, and it

sends the form token inside the form data. (A browser client

automatically does this when the user submits the form.)

3.

If a request does not include both tokens, the server disallows the

request.

4.

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

7 of 9 10/10/19, 2:26 PM

This protects the form against CSRF attacks, because an attacker

forging a request will also need to guess the anti-CSRF token. Unless

they won’t successfully trick a victim into sending a valid request.

This token should be invalidated after some time and after the user

logs out. Anti-forgery tokens work because the malicious page cannot

read the user’s tokens, due to same-origin policy.

Same Site Cookies

CSRF attacks are only possible since Cookies are always sent with any

requests that are sent to a particular origin, which is related to that

Cookie. Due to the nature of a CSRF attack, a flag can be set against a

Cookie, tuning it into a same-site Cookie. A same-site Cookie is a

Cookie which can only be sent, if the request is being made from the

same origin that is related to the Cookie being sent. The Cookie and

the page from where the request is being made, are considered to

have the same origin if the protocol, port (if applicable) and host is

the same for both.

A current limitation of same-site Cookies is that not all modern

browsers support them, while older browsers do not support web

applications that make use of same-site Cookies.

Summary
Cookies are vulnerable as they are automatically sent with each

request, allowing attackers to easily craft malicious requests leading

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

8 of 9 10/10/19, 2:26 PM

to CSRF. Although the attacker cannot obtain the response body or

the Cookie itself, the attacker can perform actions with the victim’s

elevated rights. The impact of a CSRF vulnerability is also related to

the privilege of the victim, whose Cookie is being sent with the

attacker’s request. While data retrieval is not the main scope of a

CSRF attack, state changes will surely have an adverse effect on the

web application being exploited.

Introduction to CSRF - Charithra Kariyawasam -... https://medium.com/@charithra/introduction-to-cs...

9 of 9 10/10/19, 2:26 PM

