
Ops Scripting w. Bash: Frequency 2
Tracking Frequency in BASH (Bourne Again Shell): Part II

Joaquin Menchaca Follow

May 16 · 4 min read

Like other solutions in these series, I will divide this into to parts:

Procedural Way: show how to process each line where we slice

out the shell and then build the data structure.

Serial Pipeline: show how to do a pipeline, where list of shells are

piped into loop that simply adds to the data structure.

In this article, I’ll show how to process colon delimited files using the

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

1 of 10 10/10/19, 3:12 PM

shell’s built-in auto-splitting mechanism with the built-in $IFS

environment variable.

In the third part, I’ll show how to feed data in from a sub-shell to our

loop construct, using either built-in split mechanism, or an external

tool.

Previous Article

The Problem

Ops Scripting w. BASH: Frequency

Tracking Frequency in BASH (Bourne Again Shell): Part I

medium.com

The Solutions for the Procedural Way

Solution 1: Collection Loop

In our first solution, we’ll demonstrate the collection loop, which has

an auto-splitting facility. The for loop will automatically split text

into parts, with the field separator specified by the built in $IFS

environment variable. It then iterates through each part, for an

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

2 of 10 10/10/19, 3:12 PM

environment variable you specify.

Process using Collection Loop

Before we begin we need to declare an associative array (also called a

hash, map, or dictionary) with declare -A my_assoc_array . We also

declare an array as well with declare -a my_array .

When processing text from a file, we need to split the text by the

newline \n , so that we can process each line separately. We construct

our basic collection loop like this:

IFS=$'\n'
for LINE in $(cat passwd); do
process_each $LINE

done

As each line contains fields separated by a colon : , e.g.

field1:field2:field3 , we’ll need the line into pieces by setting the

view raw

1

2

3

4

5

6

7

8

9

frequency_2.sh hosted with ❤ by GitHub

declare -A COUNTS

declare -a LINE_ITEMS

IFS=$'\n'

for LINE in $(cat passwd); do

 IFS=: LINE_ITEMS=(${LINE})

 SHELL=${LINE_ITEMS[6]}

 [[-z "${SHELL}"]] || ((COUNTS[${SHELL}]++))

done

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

3 of 10 10/10/19, 3:12 PM

input field specifier $IFS to a colon : this time. With Bash, we can do

this by surrounding a string with parenthesis (string) to create an

array from a string:

IFS=: LINE_ITEMS=($LINE)

Side note: For the shell, if you prepend a line with environment

variables, e.g. VARA=foo VARB=bar command "$VARA $VARB" , they will

only apply to that command. So above, we only set the the input field

separator to a colon : for a ITEMS=() , then it reverts back to what is

was previous, which is the newline \n char.

After we create an array, we save the 7th column (indexed by 6) to a

local variable. This is unnecessary, but done to make the code easier

to read:

SHELL=${LINE_ITEMS[6]}

Now we need make sure we didn’t copy a blank item, by seeing if our

$SHELL variable is an empty string. If it is not empty, we can process

further.

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

4 of 10 10/10/19, 3:12 PM

[[-z "${SHELL}"]] || create_shell_entry

This could also be written as:

if ! [[-z "${SHELL}"]]; then
create_shell_entry

fi

Finally, we create our associative array entry, defaulting to 0 if the

key does not yet exist:

((COUNTS[${SHELL}]++))

The double parenthesis is for arithmetic operations ((

arithmetic_operation)) , such as increment operator ++ .

Solution 2: Conditional Loop with Read

This is the most common approach, where read “will read a line from

the standard input and split it into fields” (man page entry).

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

5 of 10 10/10/19, 3:12 PM

This is the basic construct on how to open a file and read into a

variable:

while read -r LINE; do
process_line $LINE

done < input_file

We can split each line of input by the IFS (input field separator),

such as a colon : , an then extract the shell info as one of the array

elements:

while IFS=: read -ra LINE_ITEMS; do
 SHELL=${LINE_ITEMS[6]}
 process_shell_item $SHELL
done < passwd

Notice above that we use the IFS for only the read command, and

after it reverts back to the previous setting.

Now, we’ll create a new shell entry, but only if we have a valid shell

view raw

1

2

3

4

5

6

frequency_1.sh hosted with ❤ by GitHub

declare -A COUNTS

while IFS=: read -r -a LINE_ITEMS; do

 SHELL=${LINE_ITEMS[6]}

 [[-z "${SHELL}"]] || ((COUNTS[${SHELL}]++))

done < passwd

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

6 of 10 10/10/19, 3:12 PM

info:

[[-z "${SHELL}"]] || create_shell_entry

And like before we use the arithmetic operator ((

arithmetic_expression)) to increment the count. If we the key does

not have an associated value, it will treat a blank string as 0 , and

increment it.

((COUNTS[${SHELL}]++))

Which Solution is better?
For processing files and splitting the string, while read is typically

preferred combination simply because it is less work.

Default Field Separator

Reviewing from above, compare these two:

############ for loop way ############
IFS=$'\n'
for LINE in $(cat input_file); do
process_line

done

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

7 of 10 10/10/19, 3:12 PM

########### while loop way ###########
while read -r LINE; do
process_line

done < input_file

Alternative Field Separator

And we have these two:

############ for loop way ############
IFS=$'\n'
for LINE in $(cat passwd); do
IFS=: LINE_ITEMS=($LINE)
process_fields

done

########### while loop way ###########
while IFS=: read -ra LINE_ITEMS; do
process_fields

done < passwd

Next Article

Ops Scripting w. Bash: Frequency 3

Tracking Frequency in BASH (Bourne Again Shell): Part III

medium.com

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

8 of 10 10/10/19, 3:12 PM

The Conclusion
So there you have it, two ways to process files in a procedural way,

and use the built-in input field separator to split a line of text.

In the next article, I’ll show how to use more serial pipeline

approach, where only a list of shells are sent to the main loop.

The takeaways from this include:

process file through while read -r VAR; do ...; done < file loop

construction

process a file through for VAR in $(cat file); do ...; done loop

construction

split a string into an Bash array with read -a or with array

notation () .

associative arrays: creating, referencing, enumerating values and

keys

arithmetic with (())

Some more subtle takeaways:

Default input-field-separator IFS separates spaces, tabs, and

newlines.

Need to add IFS='\n' when lines themselves need to be further

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

9 of 10 10/10/19, 3:12 PM

split, unless using read command.

Ops Scripting w. Bash: Frequency 2 - Joaquin Me... https://medium.com/@Joachim8675309/ops-script...

10 of 10 10/10/19, 3:12 PM

