
XXE that can Bypass WAF
Protection: 4 Ways Hackers Slip
Through a Firewall?

Wallarm Follow

Jan 30 · 7 min read

When it comes to XXE issues, hackers have multiple ways to take

advantage of WAF configurations. We are going to show you four

ways hackers trick WAFs, sneaking XXE issues past their defenses.

4 hacker XXE methods for bypassing WAFs:

Extra document spaces1.

Invalid format2.

Exotic encodings3.

One doc: two types of encoding4.

Once you understand the issue, you should be able to restore the fire

to your defenses. We will show you how.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

1 of 11 10/10/19, 2:50 PM

A little background on XXE
A couple of years ago, XXE, or XML External Entities (XXE), were

introduced as a new issue in the OWASP Top 10 vulnerability list. The

potential devastation of this vulnerability lies in both the breadth of

those affected and the impact for each affected organization.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

2 of 11 10/10/19, 2:50 PM

XXE was the only new issue of the 2017 set that was introduced based

on direct data evidence from the security issues database. Everything

from blockbuster movies to Docker containers uses XML for metadata

and is a basis of API protocols such as REST, WSDL, SOAP, WEB-RPC,

and others. Adding to the scale of the concern, a single application

can contain several linked XML interpreters processing the data from

different application tiers. This potential ability to inject an external

entity at various points in the application stack via an XML interpreter

is what makes XXE so dangerous. However, there is more to the story.

Many Web Application Firewalls (WAFs) are capable of protecting

web-servers from XXE attacks. However, we need to understand how

XXE is a vulnerability. The problem may be one of human error and

not, as much, with the technology.

In his article in Security Boulevard, Wallarm CEO, Ivan Novikov says:

Actually, XXE is not a bug, but a well-
documented feature of any XML parser. Yes,
it’s true, an XML data format allows you to
include the content of any external text file
inside an XML document.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

3 of 11 10/10/19, 2:50 PM

An example of an XML document containing the attack code:

Here the text $attack; refers to the link to the entity registered earlier.

The contents of the file specified in the link replace it in the document

body.

The document above is divided into 3 important parts:

Optional header <?xml?> to define the basic document

characteristics, such as version and encoding.

1.

Optional declaration of the XML document schema — <!DOCTYPE> .

This declaration may be used to set external links.

2.

Document body. It has a hierarchical structure, at the root of

which is the tag specified in the <! DOCTYPE>

3.

A correctly configured XML interpreter will either not accept a

document with XML links for processing or will validate the links and

their sources. If the validation is missing, an arbitrary file can be

loaded via the link and integrated into the document body as in the

example above.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

4 of 11 10/10/19, 2:50 PM

Understanding the WAFs in question

In this article, we look at two types of WAF based on how they handle

XML validation:

Diligent WAFs: pre-process the XML document with its own

parser.

1.

Regex-based WAFs: only search for certain substrings or regular

expressions in the data.

2.

Unfortunately, bypasses exist for the WAFs of both categories.

Next, we will show you 4 ways hackers can fool a WAF and get XXE

through.

Hacker Method 1: Extra spaces in the document
Since XXE are typically at the beginning of the XML document,

a“lazy” WAF can avoid processing the entire document and only parse

its beginning. However, the XML format allows using an arbitrary

number of spaces when formatting the tag attributes, so an attacker

can insert extra spaces in <?xml?> or <!DOCTYPE> to bypass such

WAFs.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

5 of 11 10/10/19, 2:50 PM

Hacker Method 2: Invalid format
To bypass diligent WAFs, an attacker may send specially formatted

XML documents so that a WAF would consider them invalid.

Links to unknown entities

The settings of a diligent WAF usually prevent it from reading the

contents of the linked files. This is strategy generally makes sense

since the WAF itself may otherwise also become a target of an attack.

The problem is that the links to external sources can exist in the third

part of the document (the body) and also in the declaration — <!

DOCTYPE> . This means that a WAF, which has not read the contents of

the file, will not read the declarations of the entity present in the

document. The links to unknown entities, in turn, will stop the XML

parser causing an error.

Example:

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

6 of 11 10/10/19, 2:50 PM

Fortunately, there is an easy way to guard against this kind of a

bypass. Order the XML parser within WAF not to shut down after

meeting unknown entities.

Hacker Method 3: Exotic encodings
In addition to the three parts of an XML document mentioned earlier,

there is a fourth part located above them, which also controls the

encoding of the document (like <?xml?>) — the first bytes of the

document with an optional BOM (byte order mark).

[More information: https://www.w3.org/TR/xml/#sec-guessing]

An XML document can be encoded not only in UTF-8, but also in

UTF-16 (two variants — BE and LE), in UTF-32 (four variants — BE,

LE, 2143, 3412), and in EBCDIC.

With the help of such encodings, it is easy to bypass a WAF using

regular expressions since, in this type of WAF, regular expressions are

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

7 of 11 10/10/19, 2:50 PM

often configured only for a one-character set.

Exotic encodings may also be used to bypass diligent WAFs as they are

not always able to process all the encodings listed above. For

instance, the libxml2 parser only supports one type of UTF-32 —

UTF-32BE, specifically without BOM.

Hacker Method 4: Two types of encoding in one
document
In the previous section, we demonstrated that the encoding of the

document is typically specified by its first bytes. But what happens

when there is a

<?xml?> tag containing the encoding attribute referring to a different

character set at the beginning of the document? In this case, some

parsers change the encoding so that the beginning of the file has one

set of characters, and the rest of it is in another encoding. That said,

different parsers may switch the encoding at different times. A Java

parser (javax.xml.parsers) changes the character set strictly after the

<?xml?> ends, whereas the libxml2 parser may switch the encoding

right after the value of the “encoding” attribute is executed or later —

before or after the <?xml?> has been processed.

A diligent WAF can protect against the attacks in such documents

reliably only if it never processes them at all. We must also bear in

mind that there are many synonymical encodings, for example,

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

8 of 11 10/10/19, 2:50 PM

UTF-32BE and UCS-4BE. Moreover, some encodings may be different

but compatible from the point of view of coding the initial part of the

document — <?xml?> . For instance, a seemingly UTF-8 document

may contain the string <?xml version=”1.0” encoding=”windows-

1251”?> .

Here are some examples. For the sake of brevity, we won’t place XXE

in the documents.

Examples of two types of encoding in one doc

The libxml2 parser treats the document as valid, however, the Java

engine from javax.xml.parsers set considers it invalid:

Vice versa, the document is valid in terms of the javax.xml.parser, but

not valid in terms of the libxml2 parser:

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

9 of 11 10/10/19, 2:50 PM

Document for libxml2, encoding change from utf-16le to utf-16be in

the middle of the tag:

Document for libxml2, encoding change from utf-8 to ebcdic-us:

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

10 of 11 10/10/19, 2:50 PM

How to Stop XXE Attacks
The problem (and the fix) for XXE-based WAF bypasses may be as

simple as you. Standard application configuration has become known

and exploited by hackers. As you can see, there are many bypasses

without sufficient protection. The best way to prevent XXE is to

configure your application itself, initializing your XML parser in a

secure way. And that can be fairly simple, especially considering the

risk. Mainly, there are two options that should be disabled:

External entities1.

2. External DTD schema

Wallarm continues to research XXE WAF bypasses and other

vulnerabilities. This is part of our commitment to make smarter

products — and help you stay smarter than hackers at the same time.

Stay tuned.

XXE that can Bypass WAF Protection: 4 Ways Ha... https://lab.wallarm.com/xxe-that-can-bypass-waf-p...

11 of 11 10/10/19, 2:50 PM

