base.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208
  1. /*-
  2. * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
  3. * Copyright (c) 2004-2005 Atheros Communications, Inc.
  4. * Copyright (c) 2006 Devicescape Software, Inc.
  5. * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
  6. * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
  7. *
  8. * All rights reserved.
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer,
  15. * without modification.
  16. * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17. * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18. * redistribution must be conditioned upon including a substantially
  19. * similar Disclaimer requirement for further binary redistribution.
  20. * 3. Neither the names of the above-listed copyright holders nor the names
  21. * of any contributors may be used to endorse or promote products derived
  22. * from this software without specific prior written permission.
  23. *
  24. * Alternatively, this software may be distributed under the terms of the
  25. * GNU General Public License ("GPL") version 2 as published by the Free
  26. * Software Foundation.
  27. *
  28. * NO WARRANTY
  29. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31. * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32. * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33. * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34. * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37. * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39. * THE POSSIBILITY OF SUCH DAMAGES.
  40. *
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #include <linux/module.h>
  44. #include <linux/delay.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/hardirq.h>
  47. #include <linux/if.h>
  48. #include <linux/io.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/cache.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/uaccess.h>
  53. #include <linux/slab.h>
  54. #include <linux/etherdevice.h>
  55. #include <linux/nl80211.h>
  56. #include <net/cfg80211.h>
  57. #include <net/ieee80211_radiotap.h>
  58. #include <asm/unaligned.h>
  59. #include <net/mac80211.h>
  60. #include "base.h"
  61. #include "reg.h"
  62. #include "debug.h"
  63. #include "ani.h"
  64. #include "ath5k.h"
  65. #include "../regd.h"
  66. #define CREATE_TRACE_POINTS
  67. #include "trace.h"
  68. bool ath5k_modparam_nohwcrypt;
  69. module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
  70. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  71. static bool modparam_fastchanswitch;
  72. module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
  73. MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  74. static bool ath5k_modparam_no_hw_rfkill_switch;
  75. module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  76. bool, 0444);
  77. MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  78. /* Module info */
  79. MODULE_AUTHOR("Jiri Slaby");
  80. MODULE_AUTHOR("Nick Kossifidis");
  81. MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  82. MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  83. MODULE_LICENSE("Dual BSD/GPL");
  84. static int ath5k_init(struct ieee80211_hw *hw);
  85. static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  86. bool skip_pcu);
  87. /* Known SREVs */
  88. static const struct ath5k_srev_name srev_names[] = {
  89. #ifdef CONFIG_ATH5K_AHB
  90. { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
  91. { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
  92. { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
  93. { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
  94. { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
  95. { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
  96. { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
  97. #else
  98. { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
  99. { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
  100. { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
  101. { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
  102. { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
  103. { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
  104. { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
  105. { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
  106. { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
  107. { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
  108. { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
  109. { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
  110. { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
  111. { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
  112. { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
  113. { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
  114. { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
  115. { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
  116. #endif
  117. { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
  118. { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
  119. { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
  120. { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
  121. { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
  122. { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
  123. { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
  124. { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
  125. { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
  126. { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
  127. { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
  128. { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
  129. { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
  130. { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
  131. { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
  132. #ifdef CONFIG_ATH5K_AHB
  133. { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
  134. { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
  135. #endif
  136. { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
  137. };
  138. static const struct ieee80211_rate ath5k_rates[] = {
  139. { .bitrate = 10,
  140. .hw_value = ATH5K_RATE_CODE_1M, },
  141. { .bitrate = 20,
  142. .hw_value = ATH5K_RATE_CODE_2M,
  143. .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
  144. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  145. { .bitrate = 55,
  146. .hw_value = ATH5K_RATE_CODE_5_5M,
  147. .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
  148. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  149. { .bitrate = 110,
  150. .hw_value = ATH5K_RATE_CODE_11M,
  151. .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
  152. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  153. { .bitrate = 60,
  154. .hw_value = ATH5K_RATE_CODE_6M,
  155. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  156. IEEE80211_RATE_SUPPORTS_10MHZ },
  157. { .bitrate = 90,
  158. .hw_value = ATH5K_RATE_CODE_9M,
  159. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  160. IEEE80211_RATE_SUPPORTS_10MHZ },
  161. { .bitrate = 120,
  162. .hw_value = ATH5K_RATE_CODE_12M,
  163. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  164. IEEE80211_RATE_SUPPORTS_10MHZ },
  165. { .bitrate = 180,
  166. .hw_value = ATH5K_RATE_CODE_18M,
  167. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  168. IEEE80211_RATE_SUPPORTS_10MHZ },
  169. { .bitrate = 240,
  170. .hw_value = ATH5K_RATE_CODE_24M,
  171. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  172. IEEE80211_RATE_SUPPORTS_10MHZ },
  173. { .bitrate = 360,
  174. .hw_value = ATH5K_RATE_CODE_36M,
  175. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  176. IEEE80211_RATE_SUPPORTS_10MHZ },
  177. { .bitrate = 480,
  178. .hw_value = ATH5K_RATE_CODE_48M,
  179. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  180. IEEE80211_RATE_SUPPORTS_10MHZ },
  181. { .bitrate = 540,
  182. .hw_value = ATH5K_RATE_CODE_54M,
  183. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  184. IEEE80211_RATE_SUPPORTS_10MHZ },
  185. };
  186. static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
  187. {
  188. u64 tsf = ath5k_hw_get_tsf64(ah);
  189. if ((tsf & 0x7fff) < rstamp)
  190. tsf -= 0x8000;
  191. return (tsf & ~0x7fff) | rstamp;
  192. }
  193. const char *
  194. ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
  195. {
  196. const char *name = "xxxxx";
  197. unsigned int i;
  198. for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
  199. if (srev_names[i].sr_type != type)
  200. continue;
  201. if ((val & 0xf0) == srev_names[i].sr_val)
  202. name = srev_names[i].sr_name;
  203. if ((val & 0xff) == srev_names[i].sr_val) {
  204. name = srev_names[i].sr_name;
  205. break;
  206. }
  207. }
  208. return name;
  209. }
  210. static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
  211. {
  212. struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
  213. return ath5k_hw_reg_read(ah, reg_offset);
  214. }
  215. static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  216. {
  217. struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
  218. ath5k_hw_reg_write(ah, val, reg_offset);
  219. }
  220. static const struct ath_ops ath5k_common_ops = {
  221. .read = ath5k_ioread32,
  222. .write = ath5k_iowrite32,
  223. };
  224. /***********************\
  225. * Driver Initialization *
  226. \***********************/
  227. static void ath5k_reg_notifier(struct wiphy *wiphy,
  228. struct regulatory_request *request)
  229. {
  230. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  231. struct ath5k_hw *ah = hw->priv;
  232. struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
  233. ath_reg_notifier_apply(wiphy, request, regulatory);
  234. }
  235. /********************\
  236. * Channel/mode setup *
  237. \********************/
  238. /*
  239. * Returns true for the channel numbers used.
  240. */
  241. #ifdef CONFIG_ATH5K_TEST_CHANNELS
  242. static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
  243. {
  244. return true;
  245. }
  246. #else
  247. static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
  248. {
  249. if (band == NL80211_BAND_2GHZ && chan <= 14)
  250. return true;
  251. return /* UNII 1,2 */
  252. (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
  253. /* midband */
  254. ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
  255. /* UNII-3 */
  256. ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
  257. /* 802.11j 5.030-5.080 GHz (20MHz) */
  258. (chan == 8 || chan == 12 || chan == 16) ||
  259. /* 802.11j 4.9GHz (20MHz) */
  260. (chan == 184 || chan == 188 || chan == 192 || chan == 196));
  261. }
  262. #endif
  263. static unsigned int
  264. ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
  265. unsigned int mode, unsigned int max)
  266. {
  267. unsigned int count, size, freq, ch;
  268. enum nl80211_band band;
  269. switch (mode) {
  270. case AR5K_MODE_11A:
  271. /* 1..220, but 2GHz frequencies are filtered by check_channel */
  272. size = 220;
  273. band = NL80211_BAND_5GHZ;
  274. break;
  275. case AR5K_MODE_11B:
  276. case AR5K_MODE_11G:
  277. size = 26;
  278. band = NL80211_BAND_2GHZ;
  279. break;
  280. default:
  281. ATH5K_WARN(ah, "bad mode, not copying channels\n");
  282. return 0;
  283. }
  284. count = 0;
  285. for (ch = 1; ch <= size && count < max; ch++) {
  286. freq = ieee80211_channel_to_frequency(ch, band);
  287. if (freq == 0) /* mapping failed - not a standard channel */
  288. continue;
  289. /* Write channel info, needed for ath5k_channel_ok() */
  290. channels[count].center_freq = freq;
  291. channels[count].band = band;
  292. channels[count].hw_value = mode;
  293. /* Check if channel is supported by the chipset */
  294. if (!ath5k_channel_ok(ah, &channels[count]))
  295. continue;
  296. if (!ath5k_is_standard_channel(ch, band))
  297. continue;
  298. count++;
  299. }
  300. return count;
  301. }
  302. static void
  303. ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
  304. {
  305. u8 i;
  306. for (i = 0; i < AR5K_MAX_RATES; i++)
  307. ah->rate_idx[b->band][i] = -1;
  308. for (i = 0; i < b->n_bitrates; i++) {
  309. ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
  310. if (b->bitrates[i].hw_value_short)
  311. ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
  312. }
  313. }
  314. static int
  315. ath5k_setup_bands(struct ieee80211_hw *hw)
  316. {
  317. struct ath5k_hw *ah = hw->priv;
  318. struct ieee80211_supported_band *sband;
  319. int max_c, count_c = 0;
  320. int i;
  321. BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
  322. max_c = ARRAY_SIZE(ah->channels);
  323. /* 2GHz band */
  324. sband = &ah->sbands[NL80211_BAND_2GHZ];
  325. sband->band = NL80211_BAND_2GHZ;
  326. sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
  327. if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
  328. /* G mode */
  329. memcpy(sband->bitrates, &ath5k_rates[0],
  330. sizeof(struct ieee80211_rate) * 12);
  331. sband->n_bitrates = 12;
  332. sband->channels = ah->channels;
  333. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  334. AR5K_MODE_11G, max_c);
  335. hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
  336. count_c = sband->n_channels;
  337. max_c -= count_c;
  338. } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
  339. /* B mode */
  340. memcpy(sband->bitrates, &ath5k_rates[0],
  341. sizeof(struct ieee80211_rate) * 4);
  342. sband->n_bitrates = 4;
  343. /* 5211 only supports B rates and uses 4bit rate codes
  344. * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
  345. * fix them up here:
  346. */
  347. if (ah->ah_version == AR5K_AR5211) {
  348. for (i = 0; i < 4; i++) {
  349. sband->bitrates[i].hw_value =
  350. sband->bitrates[i].hw_value & 0xF;
  351. sband->bitrates[i].hw_value_short =
  352. sband->bitrates[i].hw_value_short & 0xF;
  353. }
  354. }
  355. sband->channels = ah->channels;
  356. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  357. AR5K_MODE_11B, max_c);
  358. hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
  359. count_c = sband->n_channels;
  360. max_c -= count_c;
  361. }
  362. ath5k_setup_rate_idx(ah, sband);
  363. /* 5GHz band, A mode */
  364. if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
  365. sband = &ah->sbands[NL80211_BAND_5GHZ];
  366. sband->band = NL80211_BAND_5GHZ;
  367. sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
  368. memcpy(sband->bitrates, &ath5k_rates[4],
  369. sizeof(struct ieee80211_rate) * 8);
  370. sband->n_bitrates = 8;
  371. sband->channels = &ah->channels[count_c];
  372. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  373. AR5K_MODE_11A, max_c);
  374. hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
  375. }
  376. ath5k_setup_rate_idx(ah, sband);
  377. ath5k_debug_dump_bands(ah);
  378. return 0;
  379. }
  380. /*
  381. * Set/change channels. We always reset the chip.
  382. * To accomplish this we must first cleanup any pending DMA,
  383. * then restart stuff after a la ath5k_init.
  384. *
  385. * Called with ah->lock.
  386. */
  387. int
  388. ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
  389. {
  390. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  391. "channel set, resetting (%u -> %u MHz)\n",
  392. ah->curchan->center_freq, chandef->chan->center_freq);
  393. switch (chandef->width) {
  394. case NL80211_CHAN_WIDTH_20:
  395. case NL80211_CHAN_WIDTH_20_NOHT:
  396. ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
  397. break;
  398. case NL80211_CHAN_WIDTH_5:
  399. ah->ah_bwmode = AR5K_BWMODE_5MHZ;
  400. break;
  401. case NL80211_CHAN_WIDTH_10:
  402. ah->ah_bwmode = AR5K_BWMODE_10MHZ;
  403. break;
  404. default:
  405. WARN_ON(1);
  406. return -EINVAL;
  407. }
  408. /*
  409. * To switch channels clear any pending DMA operations;
  410. * wait long enough for the RX fifo to drain, reset the
  411. * hardware at the new frequency, and then re-enable
  412. * the relevant bits of the h/w.
  413. */
  414. return ath5k_reset(ah, chandef->chan, true);
  415. }
  416. void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
  417. {
  418. struct ath5k_vif_iter_data *iter_data = data;
  419. int i;
  420. struct ath5k_vif *avf = (void *)vif->drv_priv;
  421. if (iter_data->hw_macaddr)
  422. for (i = 0; i < ETH_ALEN; i++)
  423. iter_data->mask[i] &=
  424. ~(iter_data->hw_macaddr[i] ^ mac[i]);
  425. if (!iter_data->found_active) {
  426. iter_data->found_active = true;
  427. memcpy(iter_data->active_mac, mac, ETH_ALEN);
  428. }
  429. if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
  430. if (ether_addr_equal(iter_data->hw_macaddr, mac))
  431. iter_data->need_set_hw_addr = false;
  432. if (!iter_data->any_assoc) {
  433. if (avf->assoc)
  434. iter_data->any_assoc = true;
  435. }
  436. /* Calculate combined mode - when APs are active, operate in AP mode.
  437. * Otherwise use the mode of the new interface. This can currently
  438. * only deal with combinations of APs and STAs. Only one ad-hoc
  439. * interfaces is allowed.
  440. */
  441. if (avf->opmode == NL80211_IFTYPE_AP)
  442. iter_data->opmode = NL80211_IFTYPE_AP;
  443. else {
  444. if (avf->opmode == NL80211_IFTYPE_STATION)
  445. iter_data->n_stas++;
  446. if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
  447. iter_data->opmode = avf->opmode;
  448. }
  449. }
  450. void
  451. ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
  452. struct ieee80211_vif *vif)
  453. {
  454. struct ath_common *common = ath5k_hw_common(ah);
  455. struct ath5k_vif_iter_data iter_data;
  456. u32 rfilt;
  457. /*
  458. * Use the hardware MAC address as reference, the hardware uses it
  459. * together with the BSSID mask when matching addresses.
  460. */
  461. iter_data.hw_macaddr = common->macaddr;
  462. eth_broadcast_addr(iter_data.mask);
  463. iter_data.found_active = false;
  464. iter_data.need_set_hw_addr = true;
  465. iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
  466. iter_data.n_stas = 0;
  467. if (vif)
  468. ath5k_vif_iter(&iter_data, vif->addr, vif);
  469. /* Get list of all active MAC addresses */
  470. ieee80211_iterate_active_interfaces_atomic(
  471. ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  472. ath5k_vif_iter, &iter_data);
  473. memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
  474. ah->opmode = iter_data.opmode;
  475. if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
  476. /* Nothing active, default to station mode */
  477. ah->opmode = NL80211_IFTYPE_STATION;
  478. ath5k_hw_set_opmode(ah, ah->opmode);
  479. ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
  480. ah->opmode, ath_opmode_to_string(ah->opmode));
  481. if (iter_data.need_set_hw_addr && iter_data.found_active)
  482. ath5k_hw_set_lladdr(ah, iter_data.active_mac);
  483. if (ath5k_hw_hasbssidmask(ah))
  484. ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
  485. /* Set up RX Filter */
  486. if (iter_data.n_stas > 1) {
  487. /* If you have multiple STA interfaces connected to
  488. * different APs, ARPs are not received (most of the time?)
  489. * Enabling PROMISC appears to fix that problem.
  490. */
  491. ah->filter_flags |= AR5K_RX_FILTER_PROM;
  492. }
  493. rfilt = ah->filter_flags;
  494. ath5k_hw_set_rx_filter(ah, rfilt);
  495. ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
  496. }
  497. static inline int
  498. ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
  499. {
  500. int rix;
  501. /* return base rate on errors */
  502. if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
  503. "hw_rix out of bounds: %x\n", hw_rix))
  504. return 0;
  505. rix = ah->rate_idx[ah->curchan->band][hw_rix];
  506. if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
  507. rix = 0;
  508. return rix;
  509. }
  510. /***************\
  511. * Buffers setup *
  512. \***************/
  513. static
  514. struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
  515. {
  516. struct ath_common *common = ath5k_hw_common(ah);
  517. struct sk_buff *skb;
  518. /*
  519. * Allocate buffer with headroom_needed space for the
  520. * fake physical layer header at the start.
  521. */
  522. skb = ath_rxbuf_alloc(common,
  523. common->rx_bufsize,
  524. GFP_ATOMIC);
  525. if (!skb) {
  526. ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
  527. common->rx_bufsize);
  528. return NULL;
  529. }
  530. *skb_addr = dma_map_single(ah->dev,
  531. skb->data, common->rx_bufsize,
  532. DMA_FROM_DEVICE);
  533. if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
  534. ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
  535. dev_kfree_skb(skb);
  536. return NULL;
  537. }
  538. return skb;
  539. }
  540. static int
  541. ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
  542. {
  543. struct sk_buff *skb = bf->skb;
  544. struct ath5k_desc *ds;
  545. int ret;
  546. if (!skb) {
  547. skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
  548. if (!skb)
  549. return -ENOMEM;
  550. bf->skb = skb;
  551. }
  552. /*
  553. * Setup descriptors. For receive we always terminate
  554. * the descriptor list with a self-linked entry so we'll
  555. * not get overrun under high load (as can happen with a
  556. * 5212 when ANI processing enables PHY error frames).
  557. *
  558. * To ensure the last descriptor is self-linked we create
  559. * each descriptor as self-linked and add it to the end. As
  560. * each additional descriptor is added the previous self-linked
  561. * entry is "fixed" naturally. This should be safe even
  562. * if DMA is happening. When processing RX interrupts we
  563. * never remove/process the last, self-linked, entry on the
  564. * descriptor list. This ensures the hardware always has
  565. * someplace to write a new frame.
  566. */
  567. ds = bf->desc;
  568. ds->ds_link = bf->daddr; /* link to self */
  569. ds->ds_data = bf->skbaddr;
  570. ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
  571. if (ret) {
  572. ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
  573. return ret;
  574. }
  575. if (ah->rxlink != NULL)
  576. *ah->rxlink = bf->daddr;
  577. ah->rxlink = &ds->ds_link;
  578. return 0;
  579. }
  580. static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  581. {
  582. struct ieee80211_hdr *hdr;
  583. enum ath5k_pkt_type htype;
  584. __le16 fc;
  585. hdr = (struct ieee80211_hdr *)skb->data;
  586. fc = hdr->frame_control;
  587. if (ieee80211_is_beacon(fc))
  588. htype = AR5K_PKT_TYPE_BEACON;
  589. else if (ieee80211_is_probe_resp(fc))
  590. htype = AR5K_PKT_TYPE_PROBE_RESP;
  591. else if (ieee80211_is_atim(fc))
  592. htype = AR5K_PKT_TYPE_ATIM;
  593. else if (ieee80211_is_pspoll(fc))
  594. htype = AR5K_PKT_TYPE_PSPOLL;
  595. else
  596. htype = AR5K_PKT_TYPE_NORMAL;
  597. return htype;
  598. }
  599. static struct ieee80211_rate *
  600. ath5k_get_rate(const struct ieee80211_hw *hw,
  601. const struct ieee80211_tx_info *info,
  602. struct ath5k_buf *bf, int idx)
  603. {
  604. /*
  605. * convert a ieee80211_tx_rate RC-table entry to
  606. * the respective ieee80211_rate struct
  607. */
  608. if (bf->rates[idx].idx < 0) {
  609. return NULL;
  610. }
  611. return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
  612. }
  613. static u16
  614. ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
  615. const struct ieee80211_tx_info *info,
  616. struct ath5k_buf *bf, int idx)
  617. {
  618. struct ieee80211_rate *rate;
  619. u16 hw_rate;
  620. u8 rc_flags;
  621. rate = ath5k_get_rate(hw, info, bf, idx);
  622. if (!rate)
  623. return 0;
  624. rc_flags = bf->rates[idx].flags;
  625. hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
  626. rate->hw_value_short : rate->hw_value;
  627. return hw_rate;
  628. }
  629. static int
  630. ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
  631. struct ath5k_txq *txq, int padsize,
  632. struct ieee80211_tx_control *control)
  633. {
  634. struct ath5k_desc *ds = bf->desc;
  635. struct sk_buff *skb = bf->skb;
  636. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  637. unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
  638. struct ieee80211_rate *rate;
  639. unsigned int mrr_rate[3], mrr_tries[3];
  640. int i, ret;
  641. u16 hw_rate;
  642. u16 cts_rate = 0;
  643. u16 duration = 0;
  644. u8 rc_flags;
  645. flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
  646. /* XXX endianness */
  647. bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
  648. DMA_TO_DEVICE);
  649. if (dma_mapping_error(ah->dev, bf->skbaddr))
  650. return -ENOSPC;
  651. ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
  652. ARRAY_SIZE(bf->rates));
  653. rate = ath5k_get_rate(ah->hw, info, bf, 0);
  654. if (!rate) {
  655. ret = -EINVAL;
  656. goto err_unmap;
  657. }
  658. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  659. flags |= AR5K_TXDESC_NOACK;
  660. rc_flags = bf->rates[0].flags;
  661. hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
  662. pktlen = skb->len;
  663. /* FIXME: If we are in g mode and rate is a CCK rate
  664. * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
  665. * from tx power (value is in dB units already) */
  666. if (info->control.hw_key) {
  667. keyidx = info->control.hw_key->hw_key_idx;
  668. pktlen += info->control.hw_key->icv_len;
  669. }
  670. if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  671. flags |= AR5K_TXDESC_RTSENA;
  672. cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
  673. duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
  674. info->control.vif, pktlen, info));
  675. }
  676. if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  677. flags |= AR5K_TXDESC_CTSENA;
  678. cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
  679. duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
  680. info->control.vif, pktlen, info));
  681. }
  682. ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
  683. ieee80211_get_hdrlen_from_skb(skb), padsize,
  684. get_hw_packet_type(skb),
  685. (ah->ah_txpower.txp_requested * 2),
  686. hw_rate,
  687. bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
  688. cts_rate, duration);
  689. if (ret)
  690. goto err_unmap;
  691. /* Set up MRR descriptor */
  692. if (ah->ah_capabilities.cap_has_mrr_support) {
  693. memset(mrr_rate, 0, sizeof(mrr_rate));
  694. memset(mrr_tries, 0, sizeof(mrr_tries));
  695. for (i = 0; i < 3; i++) {
  696. rate = ath5k_get_rate(ah->hw, info, bf, i);
  697. if (!rate)
  698. break;
  699. mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
  700. mrr_tries[i] = bf->rates[i].count;
  701. }
  702. ath5k_hw_setup_mrr_tx_desc(ah, ds,
  703. mrr_rate[0], mrr_tries[0],
  704. mrr_rate[1], mrr_tries[1],
  705. mrr_rate[2], mrr_tries[2]);
  706. }
  707. ds->ds_link = 0;
  708. ds->ds_data = bf->skbaddr;
  709. spin_lock_bh(&txq->lock);
  710. list_add_tail(&bf->list, &txq->q);
  711. txq->txq_len++;
  712. if (txq->link == NULL) /* is this first packet? */
  713. ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
  714. else /* no, so only link it */
  715. *txq->link = bf->daddr;
  716. txq->link = &ds->ds_link;
  717. ath5k_hw_start_tx_dma(ah, txq->qnum);
  718. mmiowb();
  719. spin_unlock_bh(&txq->lock);
  720. return 0;
  721. err_unmap:
  722. dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
  723. return ret;
  724. }
  725. /*******************\
  726. * Descriptors setup *
  727. \*******************/
  728. static int
  729. ath5k_desc_alloc(struct ath5k_hw *ah)
  730. {
  731. struct ath5k_desc *ds;
  732. struct ath5k_buf *bf;
  733. dma_addr_t da;
  734. unsigned int i;
  735. int ret;
  736. /* allocate descriptors */
  737. ah->desc_len = sizeof(struct ath5k_desc) *
  738. (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
  739. ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
  740. &ah->desc_daddr, GFP_KERNEL);
  741. if (ah->desc == NULL) {
  742. ATH5K_ERR(ah, "can't allocate descriptors\n");
  743. ret = -ENOMEM;
  744. goto err;
  745. }
  746. ds = ah->desc;
  747. da = ah->desc_daddr;
  748. ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
  749. ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
  750. bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
  751. sizeof(struct ath5k_buf), GFP_KERNEL);
  752. if (bf == NULL) {
  753. ATH5K_ERR(ah, "can't allocate bufptr\n");
  754. ret = -ENOMEM;
  755. goto err_free;
  756. }
  757. ah->bufptr = bf;
  758. INIT_LIST_HEAD(&ah->rxbuf);
  759. for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  760. bf->desc = ds;
  761. bf->daddr = da;
  762. list_add_tail(&bf->list, &ah->rxbuf);
  763. }
  764. INIT_LIST_HEAD(&ah->txbuf);
  765. ah->txbuf_len = ATH_TXBUF;
  766. for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  767. bf->desc = ds;
  768. bf->daddr = da;
  769. list_add_tail(&bf->list, &ah->txbuf);
  770. }
  771. /* beacon buffers */
  772. INIT_LIST_HEAD(&ah->bcbuf);
  773. for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  774. bf->desc = ds;
  775. bf->daddr = da;
  776. list_add_tail(&bf->list, &ah->bcbuf);
  777. }
  778. return 0;
  779. err_free:
  780. dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
  781. err:
  782. ah->desc = NULL;
  783. return ret;
  784. }
  785. void
  786. ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
  787. {
  788. BUG_ON(!bf);
  789. if (!bf->skb)
  790. return;
  791. dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
  792. DMA_TO_DEVICE);
  793. ieee80211_free_txskb(ah->hw, bf->skb);
  794. bf->skb = NULL;
  795. bf->skbaddr = 0;
  796. bf->desc->ds_data = 0;
  797. }
  798. void
  799. ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
  800. {
  801. struct ath_common *common = ath5k_hw_common(ah);
  802. BUG_ON(!bf);
  803. if (!bf->skb)
  804. return;
  805. dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
  806. DMA_FROM_DEVICE);
  807. dev_kfree_skb_any(bf->skb);
  808. bf->skb = NULL;
  809. bf->skbaddr = 0;
  810. bf->desc->ds_data = 0;
  811. }
  812. static void
  813. ath5k_desc_free(struct ath5k_hw *ah)
  814. {
  815. struct ath5k_buf *bf;
  816. list_for_each_entry(bf, &ah->txbuf, list)
  817. ath5k_txbuf_free_skb(ah, bf);
  818. list_for_each_entry(bf, &ah->rxbuf, list)
  819. ath5k_rxbuf_free_skb(ah, bf);
  820. list_for_each_entry(bf, &ah->bcbuf, list)
  821. ath5k_txbuf_free_skb(ah, bf);
  822. /* Free memory associated with all descriptors */
  823. dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
  824. ah->desc = NULL;
  825. ah->desc_daddr = 0;
  826. kfree(ah->bufptr);
  827. ah->bufptr = NULL;
  828. }
  829. /**************\
  830. * Queues setup *
  831. \**************/
  832. static struct ath5k_txq *
  833. ath5k_txq_setup(struct ath5k_hw *ah,
  834. int qtype, int subtype)
  835. {
  836. struct ath5k_txq *txq;
  837. struct ath5k_txq_info qi = {
  838. .tqi_subtype = subtype,
  839. /* XXX: default values not correct for B and XR channels,
  840. * but who cares? */
  841. .tqi_aifs = AR5K_TUNE_AIFS,
  842. .tqi_cw_min = AR5K_TUNE_CWMIN,
  843. .tqi_cw_max = AR5K_TUNE_CWMAX
  844. };
  845. int qnum;
  846. /*
  847. * Enable interrupts only for EOL and DESC conditions.
  848. * We mark tx descriptors to receive a DESC interrupt
  849. * when a tx queue gets deep; otherwise we wait for the
  850. * EOL to reap descriptors. Note that this is done to
  851. * reduce interrupt load and this only defers reaping
  852. * descriptors, never transmitting frames. Aside from
  853. * reducing interrupts this also permits more concurrency.
  854. * The only potential downside is if the tx queue backs
  855. * up in which case the top half of the kernel may backup
  856. * due to a lack of tx descriptors.
  857. */
  858. qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
  859. AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
  860. qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
  861. if (qnum < 0) {
  862. /*
  863. * NB: don't print a message, this happens
  864. * normally on parts with too few tx queues
  865. */
  866. return ERR_PTR(qnum);
  867. }
  868. txq = &ah->txqs[qnum];
  869. if (!txq->setup) {
  870. txq->qnum = qnum;
  871. txq->link = NULL;
  872. INIT_LIST_HEAD(&txq->q);
  873. spin_lock_init(&txq->lock);
  874. txq->setup = true;
  875. txq->txq_len = 0;
  876. txq->txq_max = ATH5K_TXQ_LEN_MAX;
  877. txq->txq_poll_mark = false;
  878. txq->txq_stuck = 0;
  879. }
  880. return &ah->txqs[qnum];
  881. }
  882. static int
  883. ath5k_beaconq_setup(struct ath5k_hw *ah)
  884. {
  885. struct ath5k_txq_info qi = {
  886. /* XXX: default values not correct for B and XR channels,
  887. * but who cares? */
  888. .tqi_aifs = AR5K_TUNE_AIFS,
  889. .tqi_cw_min = AR5K_TUNE_CWMIN,
  890. .tqi_cw_max = AR5K_TUNE_CWMAX,
  891. /* NB: for dynamic turbo, don't enable any other interrupts */
  892. .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
  893. };
  894. return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
  895. }
  896. static int
  897. ath5k_beaconq_config(struct ath5k_hw *ah)
  898. {
  899. struct ath5k_txq_info qi;
  900. int ret;
  901. ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
  902. if (ret)
  903. goto err;
  904. if (ah->opmode == NL80211_IFTYPE_AP ||
  905. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  906. /*
  907. * Always burst out beacon and CAB traffic
  908. * (aifs = cwmin = cwmax = 0)
  909. */
  910. qi.tqi_aifs = 0;
  911. qi.tqi_cw_min = 0;
  912. qi.tqi_cw_max = 0;
  913. } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  914. /*
  915. * Adhoc mode; backoff between 0 and (2 * cw_min).
  916. */
  917. qi.tqi_aifs = 0;
  918. qi.tqi_cw_min = 0;
  919. qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
  920. }
  921. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  922. "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
  923. qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
  924. ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
  925. if (ret) {
  926. ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
  927. "hardware queue!\n", __func__);
  928. goto err;
  929. }
  930. ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
  931. if (ret)
  932. goto err;
  933. /* reconfigure cabq with ready time to 80% of beacon_interval */
  934. ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
  935. if (ret)
  936. goto err;
  937. qi.tqi_ready_time = (ah->bintval * 80) / 100;
  938. ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
  939. if (ret)
  940. goto err;
  941. ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
  942. err:
  943. return ret;
  944. }
  945. /**
  946. * ath5k_drain_tx_buffs - Empty tx buffers
  947. *
  948. * @ah The &struct ath5k_hw
  949. *
  950. * Empty tx buffers from all queues in preparation
  951. * of a reset or during shutdown.
  952. *
  953. * NB: this assumes output has been stopped and
  954. * we do not need to block ath5k_tx_tasklet
  955. */
  956. static void
  957. ath5k_drain_tx_buffs(struct ath5k_hw *ah)
  958. {
  959. struct ath5k_txq *txq;
  960. struct ath5k_buf *bf, *bf0;
  961. int i;
  962. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
  963. if (ah->txqs[i].setup) {
  964. txq = &ah->txqs[i];
  965. spin_lock_bh(&txq->lock);
  966. list_for_each_entry_safe(bf, bf0, &txq->q, list) {
  967. ath5k_debug_printtxbuf(ah, bf);
  968. ath5k_txbuf_free_skb(ah, bf);
  969. spin_lock(&ah->txbuflock);
  970. list_move_tail(&bf->list, &ah->txbuf);
  971. ah->txbuf_len++;
  972. txq->txq_len--;
  973. spin_unlock(&ah->txbuflock);
  974. }
  975. txq->link = NULL;
  976. txq->txq_poll_mark = false;
  977. spin_unlock_bh(&txq->lock);
  978. }
  979. }
  980. }
  981. static void
  982. ath5k_txq_release(struct ath5k_hw *ah)
  983. {
  984. struct ath5k_txq *txq = ah->txqs;
  985. unsigned int i;
  986. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
  987. if (txq->setup) {
  988. ath5k_hw_release_tx_queue(ah, txq->qnum);
  989. txq->setup = false;
  990. }
  991. }
  992. /*************\
  993. * RX Handling *
  994. \*************/
  995. /*
  996. * Enable the receive h/w following a reset.
  997. */
  998. static int
  999. ath5k_rx_start(struct ath5k_hw *ah)
  1000. {
  1001. struct ath_common *common = ath5k_hw_common(ah);
  1002. struct ath5k_buf *bf;
  1003. int ret;
  1004. common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
  1005. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
  1006. common->cachelsz, common->rx_bufsize);
  1007. spin_lock_bh(&ah->rxbuflock);
  1008. ah->rxlink = NULL;
  1009. list_for_each_entry(bf, &ah->rxbuf, list) {
  1010. ret = ath5k_rxbuf_setup(ah, bf);
  1011. if (ret != 0) {
  1012. spin_unlock_bh(&ah->rxbuflock);
  1013. goto err;
  1014. }
  1015. }
  1016. bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
  1017. ath5k_hw_set_rxdp(ah, bf->daddr);
  1018. spin_unlock_bh(&ah->rxbuflock);
  1019. ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
  1020. ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
  1021. ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
  1022. return 0;
  1023. err:
  1024. return ret;
  1025. }
  1026. /*
  1027. * Disable the receive logic on PCU (DRU)
  1028. * In preparation for a shutdown.
  1029. *
  1030. * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
  1031. * does.
  1032. */
  1033. static void
  1034. ath5k_rx_stop(struct ath5k_hw *ah)
  1035. {
  1036. ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
  1037. ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
  1038. ath5k_debug_printrxbuffs(ah);
  1039. }
  1040. static unsigned int
  1041. ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
  1042. struct ath5k_rx_status *rs)
  1043. {
  1044. struct ath_common *common = ath5k_hw_common(ah);
  1045. struct ieee80211_hdr *hdr = (void *)skb->data;
  1046. unsigned int keyix, hlen;
  1047. if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
  1048. rs->rs_keyix != AR5K_RXKEYIX_INVALID)
  1049. return RX_FLAG_DECRYPTED;
  1050. /* Apparently when a default key is used to decrypt the packet
  1051. the hw does not set the index used to decrypt. In such cases
  1052. get the index from the packet. */
  1053. hlen = ieee80211_hdrlen(hdr->frame_control);
  1054. if (ieee80211_has_protected(hdr->frame_control) &&
  1055. !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
  1056. skb->len >= hlen + 4) {
  1057. keyix = skb->data[hlen + 3] >> 6;
  1058. if (test_bit(keyix, common->keymap))
  1059. return RX_FLAG_DECRYPTED;
  1060. }
  1061. return 0;
  1062. }
  1063. static void
  1064. ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
  1065. struct ieee80211_rx_status *rxs)
  1066. {
  1067. u64 tsf, bc_tstamp;
  1068. u32 hw_tu;
  1069. struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
  1070. if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
  1071. /*
  1072. * Received an IBSS beacon with the same BSSID. Hardware *must*
  1073. * have updated the local TSF. We have to work around various
  1074. * hardware bugs, though...
  1075. */
  1076. tsf = ath5k_hw_get_tsf64(ah);
  1077. bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1078. hw_tu = TSF_TO_TU(tsf);
  1079. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1080. "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
  1081. (unsigned long long)bc_tstamp,
  1082. (unsigned long long)rxs->mactime,
  1083. (unsigned long long)(rxs->mactime - bc_tstamp),
  1084. (unsigned long long)tsf);
  1085. /*
  1086. * Sometimes the HW will give us a wrong tstamp in the rx
  1087. * status, causing the timestamp extension to go wrong.
  1088. * (This seems to happen especially with beacon frames bigger
  1089. * than 78 byte (incl. FCS))
  1090. * But we know that the receive timestamp must be later than the
  1091. * timestamp of the beacon since HW must have synced to that.
  1092. *
  1093. * NOTE: here we assume mactime to be after the frame was
  1094. * received, not like mac80211 which defines it at the start.
  1095. */
  1096. if (bc_tstamp > rxs->mactime) {
  1097. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1098. "fixing mactime from %llx to %llx\n",
  1099. (unsigned long long)rxs->mactime,
  1100. (unsigned long long)tsf);
  1101. rxs->mactime = tsf;
  1102. }
  1103. /*
  1104. * Local TSF might have moved higher than our beacon timers,
  1105. * in that case we have to update them to continue sending
  1106. * beacons. This also takes care of synchronizing beacon sending
  1107. * times with other stations.
  1108. */
  1109. if (hw_tu >= ah->nexttbtt)
  1110. ath5k_beacon_update_timers(ah, bc_tstamp);
  1111. /* Check if the beacon timers are still correct, because a TSF
  1112. * update might have created a window between them - for a
  1113. * longer description see the comment of this function: */
  1114. if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
  1115. ath5k_beacon_update_timers(ah, bc_tstamp);
  1116. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1117. "fixed beacon timers after beacon receive\n");
  1118. }
  1119. }
  1120. }
  1121. /*
  1122. * Compute padding position. skb must contain an IEEE 802.11 frame
  1123. */
  1124. static int ath5k_common_padpos(struct sk_buff *skb)
  1125. {
  1126. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1127. __le16 frame_control = hdr->frame_control;
  1128. int padpos = 24;
  1129. if (ieee80211_has_a4(frame_control))
  1130. padpos += ETH_ALEN;
  1131. if (ieee80211_is_data_qos(frame_control))
  1132. padpos += IEEE80211_QOS_CTL_LEN;
  1133. return padpos;
  1134. }
  1135. /*
  1136. * This function expects an 802.11 frame and returns the number of
  1137. * bytes added, or -1 if we don't have enough header room.
  1138. */
  1139. static int ath5k_add_padding(struct sk_buff *skb)
  1140. {
  1141. int padpos = ath5k_common_padpos(skb);
  1142. int padsize = padpos & 3;
  1143. if (padsize && skb->len > padpos) {
  1144. if (skb_headroom(skb) < padsize)
  1145. return -1;
  1146. skb_push(skb, padsize);
  1147. memmove(skb->data, skb->data + padsize, padpos);
  1148. return padsize;
  1149. }
  1150. return 0;
  1151. }
  1152. /*
  1153. * The MAC header is padded to have 32-bit boundary if the
  1154. * packet payload is non-zero. The general calculation for
  1155. * padsize would take into account odd header lengths:
  1156. * padsize = 4 - (hdrlen & 3); however, since only
  1157. * even-length headers are used, padding can only be 0 or 2
  1158. * bytes and we can optimize this a bit. We must not try to
  1159. * remove padding from short control frames that do not have a
  1160. * payload.
  1161. *
  1162. * This function expects an 802.11 frame and returns the number of
  1163. * bytes removed.
  1164. */
  1165. static int ath5k_remove_padding(struct sk_buff *skb)
  1166. {
  1167. int padpos = ath5k_common_padpos(skb);
  1168. int padsize = padpos & 3;
  1169. if (padsize && skb->len >= padpos + padsize) {
  1170. memmove(skb->data + padsize, skb->data, padpos);
  1171. skb_pull(skb, padsize);
  1172. return padsize;
  1173. }
  1174. return 0;
  1175. }
  1176. static void
  1177. ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
  1178. struct ath5k_rx_status *rs)
  1179. {
  1180. struct ieee80211_rx_status *rxs;
  1181. struct ath_common *common = ath5k_hw_common(ah);
  1182. ath5k_remove_padding(skb);
  1183. rxs = IEEE80211_SKB_RXCB(skb);
  1184. rxs->flag = 0;
  1185. if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
  1186. rxs->flag |= RX_FLAG_MMIC_ERROR;
  1187. if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
  1188. rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
  1189. /*
  1190. * always extend the mac timestamp, since this information is
  1191. * also needed for proper IBSS merging.
  1192. *
  1193. * XXX: it might be too late to do it here, since rs_tstamp is
  1194. * 15bit only. that means TSF extension has to be done within
  1195. * 32768usec (about 32ms). it might be necessary to move this to
  1196. * the interrupt handler, like it is done in madwifi.
  1197. */
  1198. rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
  1199. rxs->flag |= RX_FLAG_MACTIME_END;
  1200. rxs->freq = ah->curchan->center_freq;
  1201. rxs->band = ah->curchan->band;
  1202. rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
  1203. rxs->antenna = rs->rs_antenna;
  1204. if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
  1205. ah->stats.antenna_rx[rs->rs_antenna]++;
  1206. else
  1207. ah->stats.antenna_rx[0]++; /* invalid */
  1208. rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
  1209. rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
  1210. switch (ah->ah_bwmode) {
  1211. case AR5K_BWMODE_5MHZ:
  1212. rxs->bw = RATE_INFO_BW_5;
  1213. break;
  1214. case AR5K_BWMODE_10MHZ:
  1215. rxs->bw = RATE_INFO_BW_10;
  1216. break;
  1217. default:
  1218. break;
  1219. }
  1220. if (rs->rs_rate ==
  1221. ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
  1222. rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
  1223. trace_ath5k_rx(ah, skb);
  1224. if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
  1225. ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
  1226. /* check beacons in IBSS mode */
  1227. if (ah->opmode == NL80211_IFTYPE_ADHOC)
  1228. ath5k_check_ibss_tsf(ah, skb, rxs);
  1229. }
  1230. ieee80211_rx(ah->hw, skb);
  1231. }
  1232. /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
  1233. *
  1234. * Check if we want to further process this frame or not. Also update
  1235. * statistics. Return true if we want this frame, false if not.
  1236. */
  1237. static bool
  1238. ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
  1239. {
  1240. ah->stats.rx_all_count++;
  1241. ah->stats.rx_bytes_count += rs->rs_datalen;
  1242. if (unlikely(rs->rs_status)) {
  1243. unsigned int filters;
  1244. if (rs->rs_status & AR5K_RXERR_CRC)
  1245. ah->stats.rxerr_crc++;
  1246. if (rs->rs_status & AR5K_RXERR_FIFO)
  1247. ah->stats.rxerr_fifo++;
  1248. if (rs->rs_status & AR5K_RXERR_PHY) {
  1249. ah->stats.rxerr_phy++;
  1250. if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
  1251. ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
  1252. /*
  1253. * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
  1254. * These restarts happen when the radio resynchronizes to a stronger frame
  1255. * while receiving a weaker frame. Here we receive the prefix of the weak
  1256. * frame. Since these are incomplete packets, mark their CRC as invalid.
  1257. */
  1258. if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
  1259. rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
  1260. rs->rs_status |= AR5K_RXERR_CRC;
  1261. rs->rs_status &= ~AR5K_RXERR_PHY;
  1262. } else {
  1263. return false;
  1264. }
  1265. }
  1266. if (rs->rs_status & AR5K_RXERR_DECRYPT) {
  1267. /*
  1268. * Decrypt error. If the error occurred
  1269. * because there was no hardware key, then
  1270. * let the frame through so the upper layers
  1271. * can process it. This is necessary for 5210
  1272. * parts which have no way to setup a ``clear''
  1273. * key cache entry.
  1274. *
  1275. * XXX do key cache faulting
  1276. */
  1277. ah->stats.rxerr_decrypt++;
  1278. if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
  1279. !(rs->rs_status & AR5K_RXERR_CRC))
  1280. return true;
  1281. }
  1282. if (rs->rs_status & AR5K_RXERR_MIC) {
  1283. ah->stats.rxerr_mic++;
  1284. return true;
  1285. }
  1286. /*
  1287. * Reject any frames with non-crypto errors, and take into account the
  1288. * current FIF_* filters.
  1289. */
  1290. filters = AR5K_RXERR_DECRYPT;
  1291. if (ah->fif_filter_flags & FIF_FCSFAIL)
  1292. filters |= AR5K_RXERR_CRC;
  1293. if (rs->rs_status & ~filters)
  1294. return false;
  1295. }
  1296. if (unlikely(rs->rs_more)) {
  1297. ah->stats.rxerr_jumbo++;
  1298. return false;
  1299. }
  1300. return true;
  1301. }
  1302. static void
  1303. ath5k_set_current_imask(struct ath5k_hw *ah)
  1304. {
  1305. enum ath5k_int imask;
  1306. unsigned long flags;
  1307. if (test_bit(ATH_STAT_RESET, ah->status))
  1308. return;
  1309. spin_lock_irqsave(&ah->irqlock, flags);
  1310. imask = ah->imask;
  1311. if (ah->rx_pending)
  1312. imask &= ~AR5K_INT_RX_ALL;
  1313. if (ah->tx_pending)
  1314. imask &= ~AR5K_INT_TX_ALL;
  1315. ath5k_hw_set_imr(ah, imask);
  1316. spin_unlock_irqrestore(&ah->irqlock, flags);
  1317. }
  1318. static void
  1319. ath5k_tasklet_rx(unsigned long data)
  1320. {
  1321. struct ath5k_rx_status rs = {};
  1322. struct sk_buff *skb, *next_skb;
  1323. dma_addr_t next_skb_addr;
  1324. struct ath5k_hw *ah = (void *)data;
  1325. struct ath_common *common = ath5k_hw_common(ah);
  1326. struct ath5k_buf *bf;
  1327. struct ath5k_desc *ds;
  1328. int ret;
  1329. spin_lock(&ah->rxbuflock);
  1330. if (list_empty(&ah->rxbuf)) {
  1331. ATH5K_WARN(ah, "empty rx buf pool\n");
  1332. goto unlock;
  1333. }
  1334. do {
  1335. bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
  1336. BUG_ON(bf->skb == NULL);
  1337. skb = bf->skb;
  1338. ds = bf->desc;
  1339. /* bail if HW is still using self-linked descriptor */
  1340. if (ath5k_hw_get_rxdp(ah) == bf->daddr)
  1341. break;
  1342. ret = ah->ah_proc_rx_desc(ah, ds, &rs);
  1343. if (unlikely(ret == -EINPROGRESS))
  1344. break;
  1345. else if (unlikely(ret)) {
  1346. ATH5K_ERR(ah, "error in processing rx descriptor\n");
  1347. ah->stats.rxerr_proc++;
  1348. break;
  1349. }
  1350. if (ath5k_receive_frame_ok(ah, &rs)) {
  1351. next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
  1352. /*
  1353. * If we can't replace bf->skb with a new skb under
  1354. * memory pressure, just skip this packet
  1355. */
  1356. if (!next_skb)
  1357. goto next;
  1358. dma_unmap_single(ah->dev, bf->skbaddr,
  1359. common->rx_bufsize,
  1360. DMA_FROM_DEVICE);
  1361. skb_put(skb, rs.rs_datalen);
  1362. ath5k_receive_frame(ah, skb, &rs);
  1363. bf->skb = next_skb;
  1364. bf->skbaddr = next_skb_addr;
  1365. }
  1366. next:
  1367. list_move_tail(&bf->list, &ah->rxbuf);
  1368. } while (ath5k_rxbuf_setup(ah, bf) == 0);
  1369. unlock:
  1370. spin_unlock(&ah->rxbuflock);
  1371. ah->rx_pending = false;
  1372. ath5k_set_current_imask(ah);
  1373. }
  1374. /*************\
  1375. * TX Handling *
  1376. \*************/
  1377. void
  1378. ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
  1379. struct ath5k_txq *txq, struct ieee80211_tx_control *control)
  1380. {
  1381. struct ath5k_hw *ah = hw->priv;
  1382. struct ath5k_buf *bf;
  1383. unsigned long flags;
  1384. int padsize;
  1385. trace_ath5k_tx(ah, skb, txq);
  1386. /*
  1387. * The hardware expects the header padded to 4 byte boundaries.
  1388. * If this is not the case, we add the padding after the header.
  1389. */
  1390. padsize = ath5k_add_padding(skb);
  1391. if (padsize < 0) {
  1392. ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
  1393. " headroom to pad");
  1394. goto drop_packet;
  1395. }
  1396. if (txq->txq_len >= txq->txq_max &&
  1397. txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
  1398. ieee80211_stop_queue(hw, txq->qnum);
  1399. spin_lock_irqsave(&ah->txbuflock, flags);
  1400. if (list_empty(&ah->txbuf)) {
  1401. ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
  1402. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1403. ieee80211_stop_queues(hw);
  1404. goto drop_packet;
  1405. }
  1406. bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
  1407. list_del(&bf->list);
  1408. ah->txbuf_len--;
  1409. if (list_empty(&ah->txbuf))
  1410. ieee80211_stop_queues(hw);
  1411. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1412. bf->skb = skb;
  1413. if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
  1414. bf->skb = NULL;
  1415. spin_lock_irqsave(&ah->txbuflock, flags);
  1416. list_add_tail(&bf->list, &ah->txbuf);
  1417. ah->txbuf_len++;
  1418. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1419. goto drop_packet;
  1420. }
  1421. return;
  1422. drop_packet:
  1423. ieee80211_free_txskb(hw, skb);
  1424. }
  1425. static void
  1426. ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
  1427. struct ath5k_txq *txq, struct ath5k_tx_status *ts,
  1428. struct ath5k_buf *bf)
  1429. {
  1430. struct ieee80211_tx_info *info;
  1431. u8 tries[3];
  1432. int i;
  1433. int size = 0;
  1434. ah->stats.tx_all_count++;
  1435. ah->stats.tx_bytes_count += skb->len;
  1436. info = IEEE80211_SKB_CB(skb);
  1437. size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
  1438. memcpy(info->status.rates, bf->rates, size);
  1439. tries[0] = info->status.rates[0].count;
  1440. tries[1] = info->status.rates[1].count;
  1441. tries[2] = info->status.rates[2].count;
  1442. ieee80211_tx_info_clear_status(info);
  1443. for (i = 0; i < ts->ts_final_idx; i++) {
  1444. struct ieee80211_tx_rate *r =
  1445. &info->status.rates[i];
  1446. r->count = tries[i];
  1447. }
  1448. info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
  1449. info->status.rates[ts->ts_final_idx + 1].idx = -1;
  1450. if (unlikely(ts->ts_status)) {
  1451. ah->stats.ack_fail++;
  1452. if (ts->ts_status & AR5K_TXERR_FILT) {
  1453. info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1454. ah->stats.txerr_filt++;
  1455. }
  1456. if (ts->ts_status & AR5K_TXERR_XRETRY)
  1457. ah->stats.txerr_retry++;
  1458. if (ts->ts_status & AR5K_TXERR_FIFO)
  1459. ah->stats.txerr_fifo++;
  1460. } else {
  1461. info->flags |= IEEE80211_TX_STAT_ACK;
  1462. info->status.ack_signal = ts->ts_rssi;
  1463. /* count the successful attempt as well */
  1464. info->status.rates[ts->ts_final_idx].count++;
  1465. }
  1466. /*
  1467. * Remove MAC header padding before giving the frame
  1468. * back to mac80211.
  1469. */
  1470. ath5k_remove_padding(skb);
  1471. if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
  1472. ah->stats.antenna_tx[ts->ts_antenna]++;
  1473. else
  1474. ah->stats.antenna_tx[0]++; /* invalid */
  1475. trace_ath5k_tx_complete(ah, skb, txq, ts);
  1476. ieee80211_tx_status(ah->hw, skb);
  1477. }
  1478. static void
  1479. ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
  1480. {
  1481. struct ath5k_tx_status ts = {};
  1482. struct ath5k_buf *bf, *bf0;
  1483. struct ath5k_desc *ds;
  1484. struct sk_buff *skb;
  1485. int ret;
  1486. spin_lock(&txq->lock);
  1487. list_for_each_entry_safe(bf, bf0, &txq->q, list) {
  1488. txq->txq_poll_mark = false;
  1489. /* skb might already have been processed last time. */
  1490. if (bf->skb != NULL) {
  1491. ds = bf->desc;
  1492. ret = ah->ah_proc_tx_desc(ah, ds, &ts);
  1493. if (unlikely(ret == -EINPROGRESS))
  1494. break;
  1495. else if (unlikely(ret)) {
  1496. ATH5K_ERR(ah,
  1497. "error %d while processing "
  1498. "queue %u\n", ret, txq->qnum);
  1499. break;
  1500. }
  1501. skb = bf->skb;
  1502. bf->skb = NULL;
  1503. dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
  1504. DMA_TO_DEVICE);
  1505. ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
  1506. }
  1507. /*
  1508. * It's possible that the hardware can say the buffer is
  1509. * completed when it hasn't yet loaded the ds_link from
  1510. * host memory and moved on.
  1511. * Always keep the last descriptor to avoid HW races...
  1512. */
  1513. if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
  1514. spin_lock(&ah->txbuflock);
  1515. list_move_tail(&bf->list, &ah->txbuf);
  1516. ah->txbuf_len++;
  1517. txq->txq_len--;
  1518. spin_unlock(&ah->txbuflock);
  1519. }
  1520. }
  1521. spin_unlock(&txq->lock);
  1522. if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
  1523. ieee80211_wake_queue(ah->hw, txq->qnum);
  1524. }
  1525. static void
  1526. ath5k_tasklet_tx(unsigned long data)
  1527. {
  1528. int i;
  1529. struct ath5k_hw *ah = (void *)data;
  1530. for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
  1531. if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
  1532. ath5k_tx_processq(ah, &ah->txqs[i]);
  1533. ah->tx_pending = false;
  1534. ath5k_set_current_imask(ah);
  1535. }
  1536. /*****************\
  1537. * Beacon handling *
  1538. \*****************/
  1539. /*
  1540. * Setup the beacon frame for transmit.
  1541. */
  1542. static int
  1543. ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
  1544. {
  1545. struct sk_buff *skb = bf->skb;
  1546. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1547. struct ath5k_desc *ds;
  1548. int ret = 0;
  1549. u8 antenna;
  1550. u32 flags;
  1551. const int padsize = 0;
  1552. bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
  1553. DMA_TO_DEVICE);
  1554. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
  1555. "skbaddr %llx\n", skb, skb->data, skb->len,
  1556. (unsigned long long)bf->skbaddr);
  1557. if (dma_mapping_error(ah->dev, bf->skbaddr)) {
  1558. ATH5K_ERR(ah, "beacon DMA mapping failed\n");
  1559. dev_kfree_skb_any(skb);
  1560. bf->skb = NULL;
  1561. return -EIO;
  1562. }
  1563. ds = bf->desc;
  1564. antenna = ah->ah_tx_ant;
  1565. flags = AR5K_TXDESC_NOACK;
  1566. if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
  1567. ds->ds_link = bf->daddr; /* self-linked */
  1568. flags |= AR5K_TXDESC_VEOL;
  1569. } else
  1570. ds->ds_link = 0;
  1571. /*
  1572. * If we use multiple antennas on AP and use
  1573. * the Sectored AP scenario, switch antenna every
  1574. * 4 beacons to make sure everybody hears our AP.
  1575. * When a client tries to associate, hw will keep
  1576. * track of the tx antenna to be used for this client
  1577. * automatically, based on ACKed packets.
  1578. *
  1579. * Note: AP still listens and transmits RTS on the
  1580. * default antenna which is supposed to be an omni.
  1581. *
  1582. * Note2: On sectored scenarios it's possible to have
  1583. * multiple antennas (1 omni -- the default -- and 14
  1584. * sectors), so if we choose to actually support this
  1585. * mode, we need to allow the user to set how many antennas
  1586. * we have and tweak the code below to send beacons
  1587. * on all of them.
  1588. */
  1589. if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
  1590. antenna = ah->bsent & 4 ? 2 : 1;
  1591. /* FIXME: If we are in g mode and rate is a CCK rate
  1592. * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
  1593. * from tx power (value is in dB units already) */
  1594. ds->ds_data = bf->skbaddr;
  1595. ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
  1596. ieee80211_get_hdrlen_from_skb(skb), padsize,
  1597. AR5K_PKT_TYPE_BEACON,
  1598. (ah->ah_txpower.txp_requested * 2),
  1599. ieee80211_get_tx_rate(ah->hw, info)->hw_value,
  1600. 1, AR5K_TXKEYIX_INVALID,
  1601. antenna, flags, 0, 0);
  1602. if (ret)
  1603. goto err_unmap;
  1604. return 0;
  1605. err_unmap:
  1606. dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
  1607. return ret;
  1608. }
  1609. /*
  1610. * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
  1611. * this is called only once at config_bss time, for AP we do it every
  1612. * SWBA interrupt so that the TIM will reflect buffered frames.
  1613. *
  1614. * Called with the beacon lock.
  1615. */
  1616. int
  1617. ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1618. {
  1619. int ret;
  1620. struct ath5k_hw *ah = hw->priv;
  1621. struct ath5k_vif *avf;
  1622. struct sk_buff *skb;
  1623. if (WARN_ON(!vif)) {
  1624. ret = -EINVAL;
  1625. goto out;
  1626. }
  1627. skb = ieee80211_beacon_get(hw, vif);
  1628. if (!skb) {
  1629. ret = -ENOMEM;
  1630. goto out;
  1631. }
  1632. avf = (void *)vif->drv_priv;
  1633. ath5k_txbuf_free_skb(ah, avf->bbuf);
  1634. avf->bbuf->skb = skb;
  1635. ret = ath5k_beacon_setup(ah, avf->bbuf);
  1636. out:
  1637. return ret;
  1638. }
  1639. /*
  1640. * Transmit a beacon frame at SWBA. Dynamic updates to the
  1641. * frame contents are done as needed and the slot time is
  1642. * also adjusted based on current state.
  1643. *
  1644. * This is called from software irq context (beacontq tasklets)
  1645. * or user context from ath5k_beacon_config.
  1646. */
  1647. static void
  1648. ath5k_beacon_send(struct ath5k_hw *ah)
  1649. {
  1650. struct ieee80211_vif *vif;
  1651. struct ath5k_vif *avf;
  1652. struct ath5k_buf *bf;
  1653. struct sk_buff *skb;
  1654. int err;
  1655. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
  1656. /*
  1657. * Check if the previous beacon has gone out. If
  1658. * not, don't don't try to post another: skip this
  1659. * period and wait for the next. Missed beacons
  1660. * indicate a problem and should not occur. If we
  1661. * miss too many consecutive beacons reset the device.
  1662. */
  1663. if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
  1664. ah->bmisscount++;
  1665. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1666. "missed %u consecutive beacons\n", ah->bmisscount);
  1667. if (ah->bmisscount > 10) { /* NB: 10 is a guess */
  1668. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1669. "stuck beacon time (%u missed)\n",
  1670. ah->bmisscount);
  1671. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1672. "stuck beacon, resetting\n");
  1673. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1674. }
  1675. return;
  1676. }
  1677. if (unlikely(ah->bmisscount != 0)) {
  1678. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1679. "resume beacon xmit after %u misses\n",
  1680. ah->bmisscount);
  1681. ah->bmisscount = 0;
  1682. }
  1683. if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
  1684. ah->num_mesh_vifs > 1) ||
  1685. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  1686. u64 tsf = ath5k_hw_get_tsf64(ah);
  1687. u32 tsftu = TSF_TO_TU(tsf);
  1688. int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
  1689. vif = ah->bslot[(slot + 1) % ATH_BCBUF];
  1690. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1691. "tsf %llx tsftu %x intval %u slot %u vif %p\n",
  1692. (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
  1693. } else /* only one interface */
  1694. vif = ah->bslot[0];
  1695. if (!vif)
  1696. return;
  1697. avf = (void *)vif->drv_priv;
  1698. bf = avf->bbuf;
  1699. /*
  1700. * Stop any current dma and put the new frame on the queue.
  1701. * This should never fail since we check above that no frames
  1702. * are still pending on the queue.
  1703. */
  1704. if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
  1705. ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
  1706. /* NB: hw still stops DMA, so proceed */
  1707. }
  1708. /* refresh the beacon for AP or MESH mode */
  1709. if (ah->opmode == NL80211_IFTYPE_AP ||
  1710. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  1711. err = ath5k_beacon_update(ah->hw, vif);
  1712. if (err)
  1713. return;
  1714. }
  1715. if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
  1716. ah->opmode == NL80211_IFTYPE_MONITOR)) {
  1717. ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
  1718. return;
  1719. }
  1720. trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
  1721. ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
  1722. ath5k_hw_start_tx_dma(ah, ah->bhalq);
  1723. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
  1724. ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
  1725. skb = ieee80211_get_buffered_bc(ah->hw, vif);
  1726. while (skb) {
  1727. ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
  1728. if (ah->cabq->txq_len >= ah->cabq->txq_max)
  1729. break;
  1730. skb = ieee80211_get_buffered_bc(ah->hw, vif);
  1731. }
  1732. ah->bsent++;
  1733. }
  1734. /**
  1735. * ath5k_beacon_update_timers - update beacon timers
  1736. *
  1737. * @ah: struct ath5k_hw pointer we are operating on
  1738. * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
  1739. * beacon timer update based on the current HW TSF.
  1740. *
  1741. * Calculate the next target beacon transmit time (TBTT) based on the timestamp
  1742. * of a received beacon or the current local hardware TSF and write it to the
  1743. * beacon timer registers.
  1744. *
  1745. * This is called in a variety of situations, e.g. when a beacon is received,
  1746. * when a TSF update has been detected, but also when an new IBSS is created or
  1747. * when we otherwise know we have to update the timers, but we keep it in this
  1748. * function to have it all together in one place.
  1749. */
  1750. void
  1751. ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
  1752. {
  1753. u32 nexttbtt, intval, hw_tu, bc_tu;
  1754. u64 hw_tsf;
  1755. intval = ah->bintval & AR5K_BEACON_PERIOD;
  1756. if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
  1757. + ah->num_mesh_vifs > 1) {
  1758. intval /= ATH_BCBUF; /* staggered multi-bss beacons */
  1759. if (intval < 15)
  1760. ATH5K_WARN(ah, "intval %u is too low, min 15\n",
  1761. intval);
  1762. }
  1763. if (WARN_ON(!intval))
  1764. return;
  1765. /* beacon TSF converted to TU */
  1766. bc_tu = TSF_TO_TU(bc_tsf);
  1767. /* current TSF converted to TU */
  1768. hw_tsf = ath5k_hw_get_tsf64(ah);
  1769. hw_tu = TSF_TO_TU(hw_tsf);
  1770. #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
  1771. /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
  1772. * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
  1773. * configuration we need to make sure it is bigger than that. */
  1774. if (bc_tsf == -1) {
  1775. /*
  1776. * no beacons received, called internally.
  1777. * just need to refresh timers based on HW TSF.
  1778. */
  1779. nexttbtt = roundup(hw_tu + FUDGE, intval);
  1780. } else if (bc_tsf == 0) {
  1781. /*
  1782. * no beacon received, probably called by ath5k_reset_tsf().
  1783. * reset TSF to start with 0.
  1784. */
  1785. nexttbtt = intval;
  1786. intval |= AR5K_BEACON_RESET_TSF;
  1787. } else if (bc_tsf > hw_tsf) {
  1788. /*
  1789. * beacon received, SW merge happened but HW TSF not yet updated.
  1790. * not possible to reconfigure timers yet, but next time we
  1791. * receive a beacon with the same BSSID, the hardware will
  1792. * automatically update the TSF and then we need to reconfigure
  1793. * the timers.
  1794. */
  1795. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1796. "need to wait for HW TSF sync\n");
  1797. return;
  1798. } else {
  1799. /*
  1800. * most important case for beacon synchronization between STA.
  1801. *
  1802. * beacon received and HW TSF has been already updated by HW.
  1803. * update next TBTT based on the TSF of the beacon, but make
  1804. * sure it is ahead of our local TSF timer.
  1805. */
  1806. nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
  1807. }
  1808. #undef FUDGE
  1809. ah->nexttbtt = nexttbtt;
  1810. intval |= AR5K_BEACON_ENA;
  1811. ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
  1812. /*
  1813. * debugging output last in order to preserve the time critical aspect
  1814. * of this function
  1815. */
  1816. if (bc_tsf == -1)
  1817. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1818. "reconfigured timers based on HW TSF\n");
  1819. else if (bc_tsf == 0)
  1820. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1821. "reset HW TSF and timers\n");
  1822. else
  1823. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1824. "updated timers based on beacon TSF\n");
  1825. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1826. "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
  1827. (unsigned long long) bc_tsf,
  1828. (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
  1829. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
  1830. intval & AR5K_BEACON_PERIOD,
  1831. intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
  1832. intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
  1833. }
  1834. /**
  1835. * ath5k_beacon_config - Configure the beacon queues and interrupts
  1836. *
  1837. * @ah: struct ath5k_hw pointer we are operating on
  1838. *
  1839. * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
  1840. * interrupts to detect TSF updates only.
  1841. */
  1842. void
  1843. ath5k_beacon_config(struct ath5k_hw *ah)
  1844. {
  1845. spin_lock_bh(&ah->block);
  1846. ah->bmisscount = 0;
  1847. ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
  1848. if (ah->enable_beacon) {
  1849. /*
  1850. * In IBSS mode we use a self-linked tx descriptor and let the
  1851. * hardware send the beacons automatically. We have to load it
  1852. * only once here.
  1853. * We use the SWBA interrupt only to keep track of the beacon
  1854. * timers in order to detect automatic TSF updates.
  1855. */
  1856. ath5k_beaconq_config(ah);
  1857. ah->imask |= AR5K_INT_SWBA;
  1858. if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  1859. if (ath5k_hw_hasveol(ah))
  1860. ath5k_beacon_send(ah);
  1861. } else
  1862. ath5k_beacon_update_timers(ah, -1);
  1863. } else {
  1864. ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
  1865. }
  1866. ath5k_hw_set_imr(ah, ah->imask);
  1867. mmiowb();
  1868. spin_unlock_bh(&ah->block);
  1869. }
  1870. static void ath5k_tasklet_beacon(unsigned long data)
  1871. {
  1872. struct ath5k_hw *ah = (struct ath5k_hw *) data;
  1873. /*
  1874. * Software beacon alert--time to send a beacon.
  1875. *
  1876. * In IBSS mode we use this interrupt just to
  1877. * keep track of the next TBTT (target beacon
  1878. * transmission time) in order to detect whether
  1879. * automatic TSF updates happened.
  1880. */
  1881. if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  1882. /* XXX: only if VEOL supported */
  1883. u64 tsf = ath5k_hw_get_tsf64(ah);
  1884. ah->nexttbtt += ah->bintval;
  1885. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1886. "SWBA nexttbtt: %x hw_tu: %x "
  1887. "TSF: %llx\n",
  1888. ah->nexttbtt,
  1889. TSF_TO_TU(tsf),
  1890. (unsigned long long) tsf);
  1891. } else {
  1892. spin_lock(&ah->block);
  1893. ath5k_beacon_send(ah);
  1894. spin_unlock(&ah->block);
  1895. }
  1896. }
  1897. /********************\
  1898. * Interrupt handling *
  1899. \********************/
  1900. static void
  1901. ath5k_intr_calibration_poll(struct ath5k_hw *ah)
  1902. {
  1903. if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
  1904. !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
  1905. !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
  1906. /* Run ANI only when calibration is not active */
  1907. ah->ah_cal_next_ani = jiffies +
  1908. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
  1909. tasklet_schedule(&ah->ani_tasklet);
  1910. } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
  1911. !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
  1912. !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
  1913. /* Run calibration only when another calibration
  1914. * is not running.
  1915. *
  1916. * Note: This is for both full/short calibration,
  1917. * if it's time for a full one, ath5k_calibrate_work will deal
  1918. * with it. */
  1919. ah->ah_cal_next_short = jiffies +
  1920. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
  1921. ieee80211_queue_work(ah->hw, &ah->calib_work);
  1922. }
  1923. /* we could use SWI to generate enough interrupts to meet our
  1924. * calibration interval requirements, if necessary:
  1925. * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
  1926. }
  1927. static void
  1928. ath5k_schedule_rx(struct ath5k_hw *ah)
  1929. {
  1930. ah->rx_pending = true;
  1931. tasklet_schedule(&ah->rxtq);
  1932. }
  1933. static void
  1934. ath5k_schedule_tx(struct ath5k_hw *ah)
  1935. {
  1936. ah->tx_pending = true;
  1937. tasklet_schedule(&ah->txtq);
  1938. }
  1939. static irqreturn_t
  1940. ath5k_intr(int irq, void *dev_id)
  1941. {
  1942. struct ath5k_hw *ah = dev_id;
  1943. enum ath5k_int status;
  1944. unsigned int counter = 1000;
  1945. /*
  1946. * If hw is not ready (or detached) and we get an
  1947. * interrupt, or if we have no interrupts pending
  1948. * (that means it's not for us) skip it.
  1949. *
  1950. * NOTE: Group 0/1 PCI interface registers are not
  1951. * supported on WiSOCs, so we can't check for pending
  1952. * interrupts (ISR belongs to another register group
  1953. * so we are ok).
  1954. */
  1955. if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
  1956. ((ath5k_get_bus_type(ah) != ATH_AHB) &&
  1957. !ath5k_hw_is_intr_pending(ah))))
  1958. return IRQ_NONE;
  1959. /** Main loop **/
  1960. do {
  1961. ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
  1962. ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
  1963. status, ah->imask);
  1964. /*
  1965. * Fatal hw error -> Log and reset
  1966. *
  1967. * Fatal errors are unrecoverable so we have to
  1968. * reset the card. These errors include bus and
  1969. * dma errors.
  1970. */
  1971. if (unlikely(status & AR5K_INT_FATAL)) {
  1972. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1973. "fatal int, resetting\n");
  1974. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1975. /*
  1976. * RX Overrun -> Count and reset if needed
  1977. *
  1978. * Receive buffers are full. Either the bus is busy or
  1979. * the CPU is not fast enough to process all received
  1980. * frames.
  1981. */
  1982. } else if (unlikely(status & AR5K_INT_RXORN)) {
  1983. /*
  1984. * Older chipsets need a reset to come out of this
  1985. * condition, but we treat it as RX for newer chips.
  1986. * We don't know exactly which versions need a reset
  1987. * this guess is copied from the HAL.
  1988. */
  1989. ah->stats.rxorn_intr++;
  1990. if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
  1991. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1992. "rx overrun, resetting\n");
  1993. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1994. } else
  1995. ath5k_schedule_rx(ah);
  1996. } else {
  1997. /* Software Beacon Alert -> Schedule beacon tasklet */
  1998. if (status & AR5K_INT_SWBA)
  1999. tasklet_hi_schedule(&ah->beacontq);
  2000. /*
  2001. * No more RX descriptors -> Just count
  2002. *
  2003. * NB: the hardware should re-read the link when
  2004. * RXE bit is written, but it doesn't work at
  2005. * least on older hardware revs.
  2006. */
  2007. if (status & AR5K_INT_RXEOL)
  2008. ah->stats.rxeol_intr++;
  2009. /* TX Underrun -> Bump tx trigger level */
  2010. if (status & AR5K_INT_TXURN)
  2011. ath5k_hw_update_tx_triglevel(ah, true);
  2012. /* RX -> Schedule rx tasklet */
  2013. if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
  2014. ath5k_schedule_rx(ah);
  2015. /* TX -> Schedule tx tasklet */
  2016. if (status & (AR5K_INT_TXOK
  2017. | AR5K_INT_TXDESC
  2018. | AR5K_INT_TXERR
  2019. | AR5K_INT_TXEOL))
  2020. ath5k_schedule_tx(ah);
  2021. /* Missed beacon -> TODO
  2022. if (status & AR5K_INT_BMISS)
  2023. */
  2024. /* MIB event -> Update counters and notify ANI */
  2025. if (status & AR5K_INT_MIB) {
  2026. ah->stats.mib_intr++;
  2027. ath5k_hw_update_mib_counters(ah);
  2028. ath5k_ani_mib_intr(ah);
  2029. }
  2030. /* GPIO -> Notify RFKill layer */
  2031. if (status & AR5K_INT_GPIO)
  2032. tasklet_schedule(&ah->rf_kill.toggleq);
  2033. }
  2034. if (ath5k_get_bus_type(ah) == ATH_AHB)
  2035. break;
  2036. } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
  2037. /*
  2038. * Until we handle rx/tx interrupts mask them on IMR
  2039. *
  2040. * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
  2041. * and unset after we 've handled the interrupts.
  2042. */
  2043. if (ah->rx_pending || ah->tx_pending)
  2044. ath5k_set_current_imask(ah);
  2045. if (unlikely(!counter))
  2046. ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
  2047. /* Fire up calibration poll */
  2048. ath5k_intr_calibration_poll(ah);
  2049. return IRQ_HANDLED;
  2050. }
  2051. /*
  2052. * Periodically recalibrate the PHY to account
  2053. * for temperature/environment changes.
  2054. */
  2055. static void
  2056. ath5k_calibrate_work(struct work_struct *work)
  2057. {
  2058. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2059. calib_work);
  2060. /* Should we run a full calibration ? */
  2061. if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
  2062. ah->ah_cal_next_full = jiffies +
  2063. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
  2064. ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
  2065. ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
  2066. "running full calibration\n");
  2067. if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
  2068. /*
  2069. * Rfgain is out of bounds, reset the chip
  2070. * to load new gain values.
  2071. */
  2072. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2073. "got new rfgain, resetting\n");
  2074. ieee80211_queue_work(ah->hw, &ah->reset_work);
  2075. }
  2076. } else
  2077. ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
  2078. ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
  2079. ieee80211_frequency_to_channel(ah->curchan->center_freq),
  2080. ah->curchan->hw_value);
  2081. if (ath5k_hw_phy_calibrate(ah, ah->curchan))
  2082. ATH5K_ERR(ah, "calibration of channel %u failed\n",
  2083. ieee80211_frequency_to_channel(
  2084. ah->curchan->center_freq));
  2085. /* Clear calibration flags */
  2086. if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
  2087. ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
  2088. else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
  2089. ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
  2090. }
  2091. static void
  2092. ath5k_tasklet_ani(unsigned long data)
  2093. {
  2094. struct ath5k_hw *ah = (void *)data;
  2095. ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
  2096. ath5k_ani_calibration(ah);
  2097. ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
  2098. }
  2099. static void
  2100. ath5k_tx_complete_poll_work(struct work_struct *work)
  2101. {
  2102. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2103. tx_complete_work.work);
  2104. struct ath5k_txq *txq;
  2105. int i;
  2106. bool needreset = false;
  2107. if (!test_bit(ATH_STAT_STARTED, ah->status))
  2108. return;
  2109. mutex_lock(&ah->lock);
  2110. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
  2111. if (ah->txqs[i].setup) {
  2112. txq = &ah->txqs[i];
  2113. spin_lock_bh(&txq->lock);
  2114. if (txq->txq_len > 1) {
  2115. if (txq->txq_poll_mark) {
  2116. ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
  2117. "TX queue stuck %d\n",
  2118. txq->qnum);
  2119. needreset = true;
  2120. txq->txq_stuck++;
  2121. spin_unlock_bh(&txq->lock);
  2122. break;
  2123. } else {
  2124. txq->txq_poll_mark = true;
  2125. }
  2126. }
  2127. spin_unlock_bh(&txq->lock);
  2128. }
  2129. }
  2130. if (needreset) {
  2131. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2132. "TX queues stuck, resetting\n");
  2133. ath5k_reset(ah, NULL, true);
  2134. }
  2135. mutex_unlock(&ah->lock);
  2136. ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
  2137. msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
  2138. }
  2139. /*************************\
  2140. * Initialization routines *
  2141. \*************************/
  2142. static const struct ieee80211_iface_limit if_limits[] = {
  2143. { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
  2144. { .max = 4, .types =
  2145. #ifdef CONFIG_MAC80211_MESH
  2146. BIT(NL80211_IFTYPE_MESH_POINT) |
  2147. #endif
  2148. BIT(NL80211_IFTYPE_AP) },
  2149. };
  2150. static const struct ieee80211_iface_combination if_comb = {
  2151. .limits = if_limits,
  2152. .n_limits = ARRAY_SIZE(if_limits),
  2153. .max_interfaces = 2048,
  2154. .num_different_channels = 1,
  2155. };
  2156. int
  2157. ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
  2158. {
  2159. struct ieee80211_hw *hw = ah->hw;
  2160. struct ath_common *common;
  2161. int ret;
  2162. int csz;
  2163. /* Initialize driver private data */
  2164. SET_IEEE80211_DEV(hw, ah->dev);
  2165. ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
  2166. ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
  2167. ieee80211_hw_set(hw, MFP_CAPABLE);
  2168. ieee80211_hw_set(hw, SIGNAL_DBM);
  2169. ieee80211_hw_set(hw, RX_INCLUDES_FCS);
  2170. ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
  2171. hw->wiphy->interface_modes =
  2172. BIT(NL80211_IFTYPE_AP) |
  2173. BIT(NL80211_IFTYPE_STATION) |
  2174. BIT(NL80211_IFTYPE_ADHOC) |
  2175. BIT(NL80211_IFTYPE_MESH_POINT);
  2176. hw->wiphy->iface_combinations = &if_comb;
  2177. hw->wiphy->n_iface_combinations = 1;
  2178. /* SW support for IBSS_RSN is provided by mac80211 */
  2179. hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
  2180. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
  2181. /* both antennas can be configured as RX or TX */
  2182. hw->wiphy->available_antennas_tx = 0x3;
  2183. hw->wiphy->available_antennas_rx = 0x3;
  2184. hw->extra_tx_headroom = 2;
  2185. wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
  2186. /*
  2187. * Mark the device as detached to avoid processing
  2188. * interrupts until setup is complete.
  2189. */
  2190. __set_bit(ATH_STAT_INVALID, ah->status);
  2191. ah->opmode = NL80211_IFTYPE_STATION;
  2192. ah->bintval = 1000;
  2193. mutex_init(&ah->lock);
  2194. spin_lock_init(&ah->rxbuflock);
  2195. spin_lock_init(&ah->txbuflock);
  2196. spin_lock_init(&ah->block);
  2197. spin_lock_init(&ah->irqlock);
  2198. /* Setup interrupt handler */
  2199. ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
  2200. if (ret) {
  2201. ATH5K_ERR(ah, "request_irq failed\n");
  2202. goto err;
  2203. }
  2204. common = ath5k_hw_common(ah);
  2205. common->ops = &ath5k_common_ops;
  2206. common->bus_ops = bus_ops;
  2207. common->ah = ah;
  2208. common->hw = hw;
  2209. common->priv = ah;
  2210. common->clockrate = 40;
  2211. /*
  2212. * Cache line size is used to size and align various
  2213. * structures used to communicate with the hardware.
  2214. */
  2215. ath5k_read_cachesize(common, &csz);
  2216. common->cachelsz = csz << 2; /* convert to bytes */
  2217. spin_lock_init(&common->cc_lock);
  2218. /* Initialize device */
  2219. ret = ath5k_hw_init(ah);
  2220. if (ret)
  2221. goto err_irq;
  2222. /* Set up multi-rate retry capabilities */
  2223. if (ah->ah_capabilities.cap_has_mrr_support) {
  2224. hw->max_rates = 4;
  2225. hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
  2226. AR5K_INIT_RETRY_LONG);
  2227. }
  2228. hw->vif_data_size = sizeof(struct ath5k_vif);
  2229. /* Finish private driver data initialization */
  2230. ret = ath5k_init(hw);
  2231. if (ret)
  2232. goto err_ah;
  2233. ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
  2234. ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
  2235. ah->ah_mac_srev,
  2236. ah->ah_phy_revision);
  2237. if (!ah->ah_single_chip) {
  2238. /* Single chip radio (!RF5111) */
  2239. if (ah->ah_radio_5ghz_revision &&
  2240. !ah->ah_radio_2ghz_revision) {
  2241. /* No 5GHz support -> report 2GHz radio */
  2242. if (!test_bit(AR5K_MODE_11A,
  2243. ah->ah_capabilities.cap_mode)) {
  2244. ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
  2245. ath5k_chip_name(AR5K_VERSION_RAD,
  2246. ah->ah_radio_5ghz_revision),
  2247. ah->ah_radio_5ghz_revision);
  2248. /* No 2GHz support (5110 and some
  2249. * 5GHz only cards) -> report 5GHz radio */
  2250. } else if (!test_bit(AR5K_MODE_11B,
  2251. ah->ah_capabilities.cap_mode)) {
  2252. ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
  2253. ath5k_chip_name(AR5K_VERSION_RAD,
  2254. ah->ah_radio_5ghz_revision),
  2255. ah->ah_radio_5ghz_revision);
  2256. /* Multiband radio */
  2257. } else {
  2258. ATH5K_INFO(ah, "RF%s multiband radio found"
  2259. " (0x%x)\n",
  2260. ath5k_chip_name(AR5K_VERSION_RAD,
  2261. ah->ah_radio_5ghz_revision),
  2262. ah->ah_radio_5ghz_revision);
  2263. }
  2264. }
  2265. /* Multi chip radio (RF5111 - RF2111) ->
  2266. * report both 2GHz/5GHz radios */
  2267. else if (ah->ah_radio_5ghz_revision &&
  2268. ah->ah_radio_2ghz_revision) {
  2269. ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
  2270. ath5k_chip_name(AR5K_VERSION_RAD,
  2271. ah->ah_radio_5ghz_revision),
  2272. ah->ah_radio_5ghz_revision);
  2273. ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
  2274. ath5k_chip_name(AR5K_VERSION_RAD,
  2275. ah->ah_radio_2ghz_revision),
  2276. ah->ah_radio_2ghz_revision);
  2277. }
  2278. }
  2279. ath5k_debug_init_device(ah);
  2280. /* ready to process interrupts */
  2281. __clear_bit(ATH_STAT_INVALID, ah->status);
  2282. return 0;
  2283. err_ah:
  2284. ath5k_hw_deinit(ah);
  2285. err_irq:
  2286. free_irq(ah->irq, ah);
  2287. err:
  2288. return ret;
  2289. }
  2290. static int
  2291. ath5k_stop_locked(struct ath5k_hw *ah)
  2292. {
  2293. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
  2294. test_bit(ATH_STAT_INVALID, ah->status));
  2295. /*
  2296. * Shutdown the hardware and driver:
  2297. * stop output from above
  2298. * disable interrupts
  2299. * turn off timers
  2300. * turn off the radio
  2301. * clear transmit machinery
  2302. * clear receive machinery
  2303. * drain and release tx queues
  2304. * reclaim beacon resources
  2305. * power down hardware
  2306. *
  2307. * Note that some of this work is not possible if the
  2308. * hardware is gone (invalid).
  2309. */
  2310. ieee80211_stop_queues(ah->hw);
  2311. if (!test_bit(ATH_STAT_INVALID, ah->status)) {
  2312. ath5k_led_off(ah);
  2313. ath5k_hw_set_imr(ah, 0);
  2314. synchronize_irq(ah->irq);
  2315. ath5k_rx_stop(ah);
  2316. ath5k_hw_dma_stop(ah);
  2317. ath5k_drain_tx_buffs(ah);
  2318. ath5k_hw_phy_disable(ah);
  2319. }
  2320. return 0;
  2321. }
  2322. int ath5k_start(struct ieee80211_hw *hw)
  2323. {
  2324. struct ath5k_hw *ah = hw->priv;
  2325. struct ath_common *common = ath5k_hw_common(ah);
  2326. int ret, i;
  2327. mutex_lock(&ah->lock);
  2328. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
  2329. /*
  2330. * Stop anything previously setup. This is safe
  2331. * no matter this is the first time through or not.
  2332. */
  2333. ath5k_stop_locked(ah);
  2334. /*
  2335. * The basic interface to setting the hardware in a good
  2336. * state is ``reset''. On return the hardware is known to
  2337. * be powered up and with interrupts disabled. This must
  2338. * be followed by initialization of the appropriate bits
  2339. * and then setup of the interrupt mask.
  2340. */
  2341. ah->curchan = ah->hw->conf.chandef.chan;
  2342. ah->imask = AR5K_INT_RXOK
  2343. | AR5K_INT_RXERR
  2344. | AR5K_INT_RXEOL
  2345. | AR5K_INT_RXORN
  2346. | AR5K_INT_TXDESC
  2347. | AR5K_INT_TXEOL
  2348. | AR5K_INT_FATAL
  2349. | AR5K_INT_GLOBAL
  2350. | AR5K_INT_MIB;
  2351. ret = ath5k_reset(ah, NULL, false);
  2352. if (ret)
  2353. goto done;
  2354. if (!ath5k_modparam_no_hw_rfkill_switch)
  2355. ath5k_rfkill_hw_start(ah);
  2356. /*
  2357. * Reset the key cache since some parts do not reset the
  2358. * contents on initial power up or resume from suspend.
  2359. */
  2360. for (i = 0; i < common->keymax; i++)
  2361. ath_hw_keyreset(common, (u16) i);
  2362. /* Use higher rates for acks instead of base
  2363. * rate */
  2364. ah->ah_ack_bitrate_high = true;
  2365. for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
  2366. ah->bslot[i] = NULL;
  2367. ret = 0;
  2368. done:
  2369. mmiowb();
  2370. mutex_unlock(&ah->lock);
  2371. set_bit(ATH_STAT_STARTED, ah->status);
  2372. ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
  2373. msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
  2374. return ret;
  2375. }
  2376. static void ath5k_stop_tasklets(struct ath5k_hw *ah)
  2377. {
  2378. ah->rx_pending = false;
  2379. ah->tx_pending = false;
  2380. tasklet_kill(&ah->rxtq);
  2381. tasklet_kill(&ah->txtq);
  2382. tasklet_kill(&ah->beacontq);
  2383. tasklet_kill(&ah->ani_tasklet);
  2384. }
  2385. /*
  2386. * Stop the device, grabbing the top-level lock to protect
  2387. * against concurrent entry through ath5k_init (which can happen
  2388. * if another thread does a system call and the thread doing the
  2389. * stop is preempted).
  2390. */
  2391. void ath5k_stop(struct ieee80211_hw *hw)
  2392. {
  2393. struct ath5k_hw *ah = hw->priv;
  2394. int ret;
  2395. mutex_lock(&ah->lock);
  2396. ret = ath5k_stop_locked(ah);
  2397. if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
  2398. /*
  2399. * Don't set the card in full sleep mode!
  2400. *
  2401. * a) When the device is in this state it must be carefully
  2402. * woken up or references to registers in the PCI clock
  2403. * domain may freeze the bus (and system). This varies
  2404. * by chip and is mostly an issue with newer parts
  2405. * (madwifi sources mentioned srev >= 0x78) that go to
  2406. * sleep more quickly.
  2407. *
  2408. * b) On older chips full sleep results a weird behaviour
  2409. * during wakeup. I tested various cards with srev < 0x78
  2410. * and they don't wake up after module reload, a second
  2411. * module reload is needed to bring the card up again.
  2412. *
  2413. * Until we figure out what's going on don't enable
  2414. * full chip reset on any chip (this is what Legacy HAL
  2415. * and Sam's HAL do anyway). Instead Perform a full reset
  2416. * on the device (same as initial state after attach) and
  2417. * leave it idle (keep MAC/BB on warm reset) */
  2418. ret = ath5k_hw_on_hold(ah);
  2419. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2420. "putting device to sleep\n");
  2421. }
  2422. mmiowb();
  2423. mutex_unlock(&ah->lock);
  2424. ath5k_stop_tasklets(ah);
  2425. clear_bit(ATH_STAT_STARTED, ah->status);
  2426. cancel_delayed_work_sync(&ah->tx_complete_work);
  2427. if (!ath5k_modparam_no_hw_rfkill_switch)
  2428. ath5k_rfkill_hw_stop(ah);
  2429. }
  2430. /*
  2431. * Reset the hardware. If chan is not NULL, then also pause rx/tx
  2432. * and change to the given channel.
  2433. *
  2434. * This should be called with ah->lock.
  2435. */
  2436. static int
  2437. ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  2438. bool skip_pcu)
  2439. {
  2440. struct ath_common *common = ath5k_hw_common(ah);
  2441. int ret, ani_mode;
  2442. bool fast = chan && modparam_fastchanswitch ? 1 : 0;
  2443. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
  2444. __set_bit(ATH_STAT_RESET, ah->status);
  2445. ath5k_hw_set_imr(ah, 0);
  2446. synchronize_irq(ah->irq);
  2447. ath5k_stop_tasklets(ah);
  2448. /* Save ani mode and disable ANI during
  2449. * reset. If we don't we might get false
  2450. * PHY error interrupts. */
  2451. ani_mode = ah->ani_state.ani_mode;
  2452. ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
  2453. /* We are going to empty hw queues
  2454. * so we should also free any remaining
  2455. * tx buffers */
  2456. ath5k_drain_tx_buffs(ah);
  2457. /* Stop PCU */
  2458. ath5k_hw_stop_rx_pcu(ah);
  2459. /* Stop DMA
  2460. *
  2461. * Note: If DMA didn't stop continue
  2462. * since only a reset will fix it.
  2463. */
  2464. ret = ath5k_hw_dma_stop(ah);
  2465. /* RF Bus grant won't work if we have pending
  2466. * frames
  2467. */
  2468. if (ret && fast) {
  2469. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2470. "DMA didn't stop, falling back to normal reset\n");
  2471. fast = false;
  2472. }
  2473. if (chan)
  2474. ah->curchan = chan;
  2475. ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
  2476. if (ret) {
  2477. ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
  2478. goto err;
  2479. }
  2480. ret = ath5k_rx_start(ah);
  2481. if (ret) {
  2482. ATH5K_ERR(ah, "can't start recv logic\n");
  2483. goto err;
  2484. }
  2485. ath5k_ani_init(ah, ani_mode);
  2486. /*
  2487. * Set calibration intervals
  2488. *
  2489. * Note: We don't need to run calibration imediately
  2490. * since some initial calibration is done on reset
  2491. * even for fast channel switching. Also on scanning
  2492. * this will get set again and again and it won't get
  2493. * executed unless we connect somewhere and spend some
  2494. * time on the channel (that's what calibration needs
  2495. * anyway to be accurate).
  2496. */
  2497. ah->ah_cal_next_full = jiffies +
  2498. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
  2499. ah->ah_cal_next_ani = jiffies +
  2500. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
  2501. ah->ah_cal_next_short = jiffies +
  2502. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
  2503. ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
  2504. /* clear survey data and cycle counters */
  2505. memset(&ah->survey, 0, sizeof(ah->survey));
  2506. spin_lock_bh(&common->cc_lock);
  2507. ath_hw_cycle_counters_update(common);
  2508. memset(&common->cc_survey, 0, sizeof(common->cc_survey));
  2509. memset(&common->cc_ani, 0, sizeof(common->cc_ani));
  2510. spin_unlock_bh(&common->cc_lock);
  2511. /*
  2512. * Change channels and update the h/w rate map if we're switching;
  2513. * e.g. 11a to 11b/g.
  2514. *
  2515. * We may be doing a reset in response to an ioctl that changes the
  2516. * channel so update any state that might change as a result.
  2517. *
  2518. * XXX needed?
  2519. */
  2520. /* ath5k_chan_change(ah, c); */
  2521. __clear_bit(ATH_STAT_RESET, ah->status);
  2522. ath5k_beacon_config(ah);
  2523. /* intrs are enabled by ath5k_beacon_config */
  2524. ieee80211_wake_queues(ah->hw);
  2525. return 0;
  2526. err:
  2527. return ret;
  2528. }
  2529. static void ath5k_reset_work(struct work_struct *work)
  2530. {
  2531. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2532. reset_work);
  2533. mutex_lock(&ah->lock);
  2534. ath5k_reset(ah, NULL, true);
  2535. mutex_unlock(&ah->lock);
  2536. }
  2537. static int
  2538. ath5k_init(struct ieee80211_hw *hw)
  2539. {
  2540. struct ath5k_hw *ah = hw->priv;
  2541. struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
  2542. struct ath5k_txq *txq;
  2543. u8 mac[ETH_ALEN] = {};
  2544. int ret;
  2545. /*
  2546. * Collect the channel list. The 802.11 layer
  2547. * is responsible for filtering this list based
  2548. * on settings like the phy mode and regulatory
  2549. * domain restrictions.
  2550. */
  2551. ret = ath5k_setup_bands(hw);
  2552. if (ret) {
  2553. ATH5K_ERR(ah, "can't get channels\n");
  2554. goto err;
  2555. }
  2556. /*
  2557. * Allocate tx+rx descriptors and populate the lists.
  2558. */
  2559. ret = ath5k_desc_alloc(ah);
  2560. if (ret) {
  2561. ATH5K_ERR(ah, "can't allocate descriptors\n");
  2562. goto err;
  2563. }
  2564. /*
  2565. * Allocate hardware transmit queues: one queue for
  2566. * beacon frames and one data queue for each QoS
  2567. * priority. Note that hw functions handle resetting
  2568. * these queues at the needed time.
  2569. */
  2570. ret = ath5k_beaconq_setup(ah);
  2571. if (ret < 0) {
  2572. ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
  2573. goto err_desc;
  2574. }
  2575. ah->bhalq = ret;
  2576. ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
  2577. if (IS_ERR(ah->cabq)) {
  2578. ATH5K_ERR(ah, "can't setup cab queue\n");
  2579. ret = PTR_ERR(ah->cabq);
  2580. goto err_bhal;
  2581. }
  2582. /* 5211 and 5212 usually support 10 queues but we better rely on the
  2583. * capability information */
  2584. if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
  2585. /* This order matches mac80211's queue priority, so we can
  2586. * directly use the mac80211 queue number without any mapping */
  2587. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
  2588. if (IS_ERR(txq)) {
  2589. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2590. ret = PTR_ERR(txq);
  2591. goto err_queues;
  2592. }
  2593. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
  2594. if (IS_ERR(txq)) {
  2595. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2596. ret = PTR_ERR(txq);
  2597. goto err_queues;
  2598. }
  2599. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
  2600. if (IS_ERR(txq)) {
  2601. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2602. ret = PTR_ERR(txq);
  2603. goto err_queues;
  2604. }
  2605. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
  2606. if (IS_ERR(txq)) {
  2607. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2608. ret = PTR_ERR(txq);
  2609. goto err_queues;
  2610. }
  2611. hw->queues = 4;
  2612. } else {
  2613. /* older hardware (5210) can only support one data queue */
  2614. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
  2615. if (IS_ERR(txq)) {
  2616. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2617. ret = PTR_ERR(txq);
  2618. goto err_queues;
  2619. }
  2620. hw->queues = 1;
  2621. }
  2622. tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
  2623. tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
  2624. tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
  2625. tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
  2626. INIT_WORK(&ah->reset_work, ath5k_reset_work);
  2627. INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
  2628. INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
  2629. ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
  2630. if (ret) {
  2631. ATH5K_ERR(ah, "unable to read address from EEPROM\n");
  2632. goto err_queues;
  2633. }
  2634. SET_IEEE80211_PERM_ADDR(hw, mac);
  2635. /* All MAC address bits matter for ACKs */
  2636. ath5k_update_bssid_mask_and_opmode(ah, NULL);
  2637. regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
  2638. ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
  2639. if (ret) {
  2640. ATH5K_ERR(ah, "can't initialize regulatory system\n");
  2641. goto err_queues;
  2642. }
  2643. ret = ieee80211_register_hw(hw);
  2644. if (ret) {
  2645. ATH5K_ERR(ah, "can't register ieee80211 hw\n");
  2646. goto err_queues;
  2647. }
  2648. if (!ath_is_world_regd(regulatory))
  2649. regulatory_hint(hw->wiphy, regulatory->alpha2);
  2650. ath5k_init_leds(ah);
  2651. ath5k_sysfs_register(ah);
  2652. return 0;
  2653. err_queues:
  2654. ath5k_txq_release(ah);
  2655. err_bhal:
  2656. ath5k_hw_release_tx_queue(ah, ah->bhalq);
  2657. err_desc:
  2658. ath5k_desc_free(ah);
  2659. err:
  2660. return ret;
  2661. }
  2662. void
  2663. ath5k_deinit_ah(struct ath5k_hw *ah)
  2664. {
  2665. struct ieee80211_hw *hw = ah->hw;
  2666. /*
  2667. * NB: the order of these is important:
  2668. * o call the 802.11 layer before detaching ath5k_hw to
  2669. * ensure callbacks into the driver to delete global
  2670. * key cache entries can be handled
  2671. * o reclaim the tx queue data structures after calling
  2672. * the 802.11 layer as we'll get called back to reclaim
  2673. * node state and potentially want to use them
  2674. * o to cleanup the tx queues the hal is called, so detach
  2675. * it last
  2676. * XXX: ??? detach ath5k_hw ???
  2677. * Other than that, it's straightforward...
  2678. */
  2679. ieee80211_unregister_hw(hw);
  2680. ath5k_desc_free(ah);
  2681. ath5k_txq_release(ah);
  2682. ath5k_hw_release_tx_queue(ah, ah->bhalq);
  2683. ath5k_unregister_leds(ah);
  2684. ath5k_sysfs_unregister(ah);
  2685. /*
  2686. * NB: can't reclaim these until after ieee80211_ifdetach
  2687. * returns because we'll get called back to reclaim node
  2688. * state and potentially want to use them.
  2689. */
  2690. ath5k_hw_deinit(ah);
  2691. free_irq(ah->irq, ah);
  2692. }
  2693. bool
  2694. ath5k_any_vif_assoc(struct ath5k_hw *ah)
  2695. {
  2696. struct ath5k_vif_iter_data iter_data;
  2697. iter_data.hw_macaddr = NULL;
  2698. iter_data.any_assoc = false;
  2699. iter_data.need_set_hw_addr = false;
  2700. iter_data.found_active = true;
  2701. ieee80211_iterate_active_interfaces_atomic(
  2702. ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  2703. ath5k_vif_iter, &iter_data);
  2704. return iter_data.any_assoc;
  2705. }
  2706. void
  2707. ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
  2708. {
  2709. struct ath5k_hw *ah = hw->priv;
  2710. u32 rfilt;
  2711. rfilt = ath5k_hw_get_rx_filter(ah);
  2712. if (enable)
  2713. rfilt |= AR5K_RX_FILTER_BEACON;
  2714. else
  2715. rfilt &= ~AR5K_RX_FILTER_BEACON;
  2716. ath5k_hw_set_rx_filter(ah, rfilt);
  2717. ah->filter_flags = rfilt;
  2718. }
  2719. void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
  2720. const char *fmt, ...)
  2721. {
  2722. struct va_format vaf;
  2723. va_list args;
  2724. va_start(args, fmt);
  2725. vaf.fmt = fmt;
  2726. vaf.va = &args;
  2727. if (ah && ah->hw)
  2728. printk("%s" pr_fmt("%s: %pV"),
  2729. level, wiphy_name(ah->hw->wiphy), &vaf);
  2730. else
  2731. printk("%s" pr_fmt("%pV"), level, &vaf);
  2732. va_end(args);
  2733. }