123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- /*
- * EFI stub implementation that is shared by arm and arm64 architectures.
- * This should be #included by the EFI stub implementation files.
- *
- * Copyright (C) 2013,2014 Linaro Limited
- * Roy Franz <roy.franz@linaro.org
- * Copyright (C) 2013 Red Hat, Inc.
- * Mark Salter <msalter@redhat.com>
- *
- * This file is part of the Linux kernel, and is made available under the
- * terms of the GNU General Public License version 2.
- *
- */
- #include <linux/efi.h>
- #include <linux/sort.h>
- #include <asm/efi.h>
- #include "efistub.h"
- /*
- * This is the base address at which to start allocating virtual memory ranges
- * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
- * any allocation we choose, and eliminate the risk of a conflict after kexec.
- * The value chosen is the largest non-zero power of 2 suitable for this purpose
- * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
- * be mapped efficiently.
- * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
- * map everything below 1 GB. (512 MB is a reasonable upper bound for the
- * entire footprint of the UEFI runtime services memory regions)
- */
- #define EFI_RT_VIRTUAL_BASE SZ_512M
- #define EFI_RT_VIRTUAL_SIZE SZ_512M
- #ifdef CONFIG_ARM64
- # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
- #else
- # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
- #endif
- static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
- void efi_char16_printk(efi_system_table_t *sys_table_arg,
- efi_char16_t *str)
- {
- struct efi_simple_text_output_protocol *out;
- out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
- out->output_string(out, str);
- }
- static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
- {
- efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
- efi_status_t status;
- unsigned long size;
- void **gop_handle = NULL;
- struct screen_info *si = NULL;
- size = 0;
- status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
- &gop_proto, NULL, &size, gop_handle);
- if (status == EFI_BUFFER_TOO_SMALL) {
- si = alloc_screen_info(sys_table_arg);
- if (!si)
- return NULL;
- efi_setup_gop(sys_table_arg, si, &gop_proto, size);
- }
- return si;
- }
- /*
- * This function handles the architcture specific differences between arm and
- * arm64 regarding where the kernel image must be loaded and any memory that
- * must be reserved. On failure it is required to free all
- * all allocations it has made.
- */
- efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
- unsigned long *image_addr,
- unsigned long *image_size,
- unsigned long *reserve_addr,
- unsigned long *reserve_size,
- unsigned long dram_base,
- efi_loaded_image_t *image);
- /*
- * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
- * that is described in the PE/COFF header. Most of the code is the same
- * for both archictectures, with the arch-specific code provided in the
- * handle_kernel_image() function.
- */
- unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
- unsigned long *image_addr)
- {
- efi_loaded_image_t *image;
- efi_status_t status;
- unsigned long image_size = 0;
- unsigned long dram_base;
- /* addr/point and size pairs for memory management*/
- unsigned long initrd_addr;
- u64 initrd_size = 0;
- unsigned long fdt_addr = 0; /* Original DTB */
- unsigned long fdt_size = 0;
- char *cmdline_ptr = NULL;
- int cmdline_size = 0;
- unsigned long new_fdt_addr;
- efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
- unsigned long reserve_addr = 0;
- unsigned long reserve_size = 0;
- enum efi_secureboot_mode secure_boot;
- struct screen_info *si;
- /* Check if we were booted by the EFI firmware */
- if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
- goto fail;
- status = check_platform_features(sys_table);
- if (status != EFI_SUCCESS)
- goto fail;
- /*
- * Get a handle to the loaded image protocol. This is used to get
- * information about the running image, such as size and the command
- * line.
- */
- status = sys_table->boottime->handle_protocol(handle,
- &loaded_image_proto, (void *)&image);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
- goto fail;
- }
- dram_base = get_dram_base(sys_table);
- if (dram_base == EFI_ERROR) {
- pr_efi_err(sys_table, "Failed to find DRAM base\n");
- goto fail;
- }
- /*
- * Get the command line from EFI, using the LOADED_IMAGE
- * protocol. We are going to copy the command line into the
- * device tree, so this can be allocated anywhere.
- */
- cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
- if (!cmdline_ptr) {
- pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
- goto fail;
- }
- if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
- IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
- cmdline_size == 0)
- efi_parse_options(CONFIG_CMDLINE);
- if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
- efi_parse_options(cmdline_ptr);
- pr_efi(sys_table, "Booting Linux Kernel...\n");
- si = setup_graphics(sys_table);
- status = handle_kernel_image(sys_table, image_addr, &image_size,
- &reserve_addr,
- &reserve_size,
- dram_base, image);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table, "Failed to relocate kernel\n");
- goto fail_free_cmdline;
- }
- /* Ask the firmware to clear memory on unclean shutdown */
- efi_enable_reset_attack_mitigation(sys_table);
- secure_boot = efi_get_secureboot(sys_table);
- /*
- * Unauthenticated device tree data is a security hazard, so ignore
- * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
- * boot is enabled if we can't determine its state.
- */
- if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
- secure_boot != efi_secureboot_mode_disabled) {
- if (strstr(cmdline_ptr, "dtb="))
- pr_efi(sys_table, "Ignoring DTB from command line.\n");
- } else {
- status = handle_cmdline_files(sys_table, image, cmdline_ptr,
- "dtb=",
- ~0UL, &fdt_addr, &fdt_size);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table, "Failed to load device tree!\n");
- goto fail_free_image;
- }
- }
- if (fdt_addr) {
- pr_efi(sys_table, "Using DTB from command line\n");
- } else {
- /* Look for a device tree configuration table entry. */
- fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
- if (fdt_addr)
- pr_efi(sys_table, "Using DTB from configuration table\n");
- }
- if (!fdt_addr)
- pr_efi(sys_table, "Generating empty DTB\n");
- status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
- efi_get_max_initrd_addr(dram_base,
- *image_addr),
- (unsigned long *)&initrd_addr,
- (unsigned long *)&initrd_size);
- if (status != EFI_SUCCESS)
- pr_efi_err(sys_table, "Failed initrd from command line!\n");
- efi_random_get_seed(sys_table);
- /* hibernation expects the runtime regions to stay in the same place */
- if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
- /*
- * Randomize the base of the UEFI runtime services region.
- * Preserve the 2 MB alignment of the region by taking a
- * shift of 21 bit positions into account when scaling
- * the headroom value using a 32-bit random value.
- */
- static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
- EFI_RT_VIRTUAL_BASE -
- EFI_RT_VIRTUAL_SIZE;
- u32 rnd;
- status = efi_get_random_bytes(sys_table, sizeof(rnd),
- (u8 *)&rnd);
- if (status == EFI_SUCCESS) {
- virtmap_base = EFI_RT_VIRTUAL_BASE +
- (((headroom >> 21) * rnd) >> (32 - 21));
- }
- }
- new_fdt_addr = fdt_addr;
- status = allocate_new_fdt_and_exit_boot(sys_table, handle,
- &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
- initrd_addr, initrd_size, cmdline_ptr,
- fdt_addr, fdt_size);
- /*
- * If all went well, we need to return the FDT address to the
- * calling function so it can be passed to kernel as part of
- * the kernel boot protocol.
- */
- if (status == EFI_SUCCESS)
- return new_fdt_addr;
- pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
- efi_free(sys_table, initrd_size, initrd_addr);
- efi_free(sys_table, fdt_size, fdt_addr);
- fail_free_image:
- efi_free(sys_table, image_size, *image_addr);
- efi_free(sys_table, reserve_size, reserve_addr);
- fail_free_cmdline:
- free_screen_info(sys_table, si);
- efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
- fail:
- return EFI_ERROR;
- }
- static int cmp_mem_desc(const void *l, const void *r)
- {
- const efi_memory_desc_t *left = l, *right = r;
- return (left->phys_addr > right->phys_addr) ? 1 : -1;
- }
- /*
- * Returns whether region @left ends exactly where region @right starts,
- * or false if either argument is NULL.
- */
- static bool regions_are_adjacent(efi_memory_desc_t *left,
- efi_memory_desc_t *right)
- {
- u64 left_end;
- if (left == NULL || right == NULL)
- return false;
- left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
- return left_end == right->phys_addr;
- }
- /*
- * Returns whether region @left and region @right have compatible memory type
- * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
- */
- static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
- efi_memory_desc_t *right)
- {
- static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
- EFI_MEMORY_WC | EFI_MEMORY_UC |
- EFI_MEMORY_RUNTIME;
- return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
- }
- /*
- * efi_get_virtmap() - create a virtual mapping for the EFI memory map
- *
- * This function populates the virt_addr fields of all memory region descriptors
- * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
- * are also copied to @runtime_map, and their total count is returned in @count.
- */
- void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
- unsigned long desc_size, efi_memory_desc_t *runtime_map,
- int *count)
- {
- u64 efi_virt_base = virtmap_base;
- efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
- int l;
- /*
- * To work around potential issues with the Properties Table feature
- * introduced in UEFI 2.5, which may split PE/COFF executable images
- * in memory into several RuntimeServicesCode and RuntimeServicesData
- * regions, we need to preserve the relative offsets between adjacent
- * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
- * The easiest way to find adjacent regions is to sort the memory map
- * before traversing it.
- */
- if (IS_ENABLED(CONFIG_ARM64))
- sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
- NULL);
- for (l = 0; l < map_size; l += desc_size, prev = in) {
- u64 paddr, size;
- in = (void *)memory_map + l;
- if (!(in->attribute & EFI_MEMORY_RUNTIME))
- continue;
- paddr = in->phys_addr;
- size = in->num_pages * EFI_PAGE_SIZE;
- if (novamap()) {
- in->virt_addr = in->phys_addr;
- continue;
- }
- /*
- * Make the mapping compatible with 64k pages: this allows
- * a 4k page size kernel to kexec a 64k page size kernel and
- * vice versa.
- */
- if ((IS_ENABLED(CONFIG_ARM64) &&
- !regions_are_adjacent(prev, in)) ||
- !regions_have_compatible_memory_type_attrs(prev, in)) {
- paddr = round_down(in->phys_addr, SZ_64K);
- size += in->phys_addr - paddr;
- /*
- * Avoid wasting memory on PTEs by choosing a virtual
- * base that is compatible with section mappings if this
- * region has the appropriate size and physical
- * alignment. (Sections are 2 MB on 4k granule kernels)
- */
- if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
- efi_virt_base = round_up(efi_virt_base, SZ_2M);
- else
- efi_virt_base = round_up(efi_virt_base, SZ_64K);
- }
- in->virt_addr = efi_virt_base + in->phys_addr - paddr;
- efi_virt_base += size;
- memcpy(out, in, desc_size);
- out = (void *)out + desc_size;
- ++*count;
- }
- }
|