123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- |
- | satan.sa 3.3 12/19/90
- |
- | The entry point satan computes the arctangent of an
- | input value. satand does the same except the input value is a
- | denormalized number.
- |
- | Input: Double-extended value in memory location pointed to by address
- | register a0.
- |
- | Output: Arctan(X) returned in floating-point register Fp0.
- |
- | Accuracy and Monotonicity: The returned result is within 2 ulps in
- | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
- | result is subsequently rounded to double precision. The
- | result is provably monotonic in double precision.
- |
- | Speed: The program satan takes approximately 160 cycles for input
- | argument X such that 1/16 < |X| < 16. For the other arguments,
- | the program will run no worse than 10% slower.
- |
- | Algorithm:
- | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
- |
- | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
- | Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
- | of X with a bit-1 attached at the 6-th bit position. Define u
- | to be u = (X-F) / (1 + X*F).
- |
- | Step 3. Approximate arctan(u) by a polynomial poly.
- |
- | Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
- | calculated beforehand. Exit.
- |
- | Step 5. If |X| >= 16, go to Step 7.
- |
- | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
- |
- | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
- | Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | For details on the license for this file, please see the
- | file, README, in this same directory.
- |satan idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- #include "fpsp.h"
- BOUNDS1: .long 0x3FFB8000,0x4002FFFF
- ONE: .long 0x3F800000
- .long 0x00000000
- ATANA3: .long 0xBFF6687E,0x314987D8
- ATANA2: .long 0x4002AC69,0x34A26DB3
- ATANA1: .long 0xBFC2476F,0x4E1DA28E
- ATANB6: .long 0x3FB34444,0x7F876989
- ATANB5: .long 0xBFB744EE,0x7FAF45DB
- ATANB4: .long 0x3FBC71C6,0x46940220
- ATANB3: .long 0xBFC24924,0x921872F9
- ATANB2: .long 0x3FC99999,0x99998FA9
- ATANB1: .long 0xBFD55555,0x55555555
- ATANC5: .long 0xBFB70BF3,0x98539E6A
- ATANC4: .long 0x3FBC7187,0x962D1D7D
- ATANC3: .long 0xBFC24924,0x827107B8
- ATANC2: .long 0x3FC99999,0x9996263E
- ATANC1: .long 0xBFD55555,0x55555536
- PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
- NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
- PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000
- NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000
- ATANTBL:
- .long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
- .long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
- .long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
- .long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
- .long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
- .long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
- .long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
- .long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
- .long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
- .long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
- .long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
- .long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
- .long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
- .long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
- .long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
- .long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
- .long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
- .long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
- .long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
- .long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
- .long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
- .long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
- .long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
- .long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
- .long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
- .long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
- .long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
- .long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
- .long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
- .long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
- .long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
- .long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
- .long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
- .long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
- .long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
- .long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
- .long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
- .long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
- .long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
- .long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
- .long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
- .long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
- .long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
- .long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
- .long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
- .long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
- .long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
- .long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
- .long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
- .long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
- .long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
- .long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
- .long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
- .long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
- .long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
- .long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
- .long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
- .long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
- .long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
- .long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
- .long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
- .long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
- .long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
- .long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
- .long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
- .long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
- .long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
- .long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
- .long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
- .long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
- .long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
- .long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
- .long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
- .long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
- .long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
- .long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
- .long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
- .long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
- .long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
- .long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
- .long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
- .long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
- .long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
- .long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
- .long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
- .long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
- .long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
- .long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
- .long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
- .long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
- .long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
- .long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
- .long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
- .long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
- .long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
- .long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
- .long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
- .long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
- .long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
- .long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
- .long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
- .long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
- .long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
- .long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
- .long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
- .long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
- .long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
- .long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
- .long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
- .long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
- .long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
- .long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
- .long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
- .long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
- .long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
- .long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
- .long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
- .long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
- .long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
- .long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
- .long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
- .long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
- .long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
- .long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
- .long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
- .long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
- .long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
- .long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
- .set X,FP_SCR1
- .set XDCARE,X+2
- .set XFRAC,X+4
- .set XFRACLO,X+8
- .set ATANF,FP_SCR2
- .set ATANFHI,ATANF+4
- .set ATANFLO,ATANF+8
- | xref t_frcinx
- |xref t_extdnrm
- .global satand
- satand:
- |--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
- bra t_extdnrm
- .global satan
- satan:
- |--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
- fmovex (%a0),%fp0 | ...LOAD INPUT
- movel (%a0),%d0
- movew 4(%a0),%d0
- fmovex %fp0,X(%a6)
- andil #0x7FFFFFFF,%d0
- cmpil #0x3FFB8000,%d0 | ...|X| >= 1/16?
- bges ATANOK1
- bra ATANSM
- ATANOK1:
- cmpil #0x4002FFFF,%d0 | ...|X| < 16 ?
- bles ATANMAIN
- bra ATANBIG
- |--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
- |--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
- |--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
- |--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
- |--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
- |--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
- |--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
- |--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
- |--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
- |--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
- |--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
- |--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
- |--WILL INVOLVE A VERY LONG POLYNOMIAL.
- |--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
- |--WE CHOSE F TO BE +-2^K * 1.BBBB1
- |--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
- |--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
- |--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
- |-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
- ATANMAIN:
- movew #0x0000,XDCARE(%a6) | ...CLEAN UP X JUST IN CASE
- andil #0xF8000000,XFRAC(%a6) | ...FIRST 5 BITS
- oril #0x04000000,XFRAC(%a6) | ...SET 6-TH BIT TO 1
- movel #0x00000000,XFRACLO(%a6) | ...LOCATION OF X IS NOW F
- fmovex %fp0,%fp1 | ...FP1 IS X
- fmulx X(%a6),%fp1 | ...FP1 IS X*F, NOTE THAT X*F > 0
- fsubx X(%a6),%fp0 | ...FP0 IS X-F
- fadds #0x3F800000,%fp1 | ...FP1 IS 1 + X*F
- fdivx %fp1,%fp0 | ...FP0 IS U = (X-F)/(1+X*F)
- |--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
- |--CREATE ATAN(F) AND STORE IT IN ATANF, AND
- |--SAVE REGISTERS FP2.
- movel %d2,-(%a7) | ...SAVE d2 TEMPORARILY
- movel %d0,%d2 | ...THE EXPO AND 16 BITS OF X
- andil #0x00007800,%d0 | ...4 VARYING BITS OF F'S FRACTION
- andil #0x7FFF0000,%d2 | ...EXPONENT OF F
- subil #0x3FFB0000,%d2 | ...K+4
- asrl #1,%d2
- addl %d2,%d0 | ...THE 7 BITS IDENTIFYING F
- asrl #7,%d0 | ...INDEX INTO TBL OF ATAN(|F|)
- lea ATANTBL,%a1
- addal %d0,%a1 | ...ADDRESS OF ATAN(|F|)
- movel (%a1)+,ATANF(%a6)
- movel (%a1)+,ATANFHI(%a6)
- movel (%a1)+,ATANFLO(%a6) | ...ATANF IS NOW ATAN(|F|)
- movel X(%a6),%d0 | ...LOAD SIGN AND EXPO. AGAIN
- andil #0x80000000,%d0 | ...SIGN(F)
- orl %d0,ATANF(%a6) | ...ATANF IS NOW SIGN(F)*ATAN(|F|)
- movel (%a7)+,%d2 | ...RESTORE d2
- |--THAT'S ALL I HAVE TO DO FOR NOW,
- |--BUT ALAS, THE DIVIDE IS STILL CRANKING!
- |--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
- |--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
- |--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
- |--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
- |--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
- |--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
- |--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1
- fmoved ATANA3,%fp2
- faddx %fp1,%fp2 | ...A3+V
- fmulx %fp1,%fp2 | ...V*(A3+V)
- fmulx %fp0,%fp1 | ...U*V
- faddd ATANA2,%fp2 | ...A2+V*(A3+V)
- fmuld ATANA1,%fp1 | ...A1*U*V
- fmulx %fp2,%fp1 | ...A1*U*V*(A2+V*(A3+V))
- faddx %fp1,%fp0 | ...ATAN(U), FP1 RELEASED
- fmovel %d1,%FPCR |restore users exceptions
- faddx ATANF(%a6),%fp0 | ...ATAN(X)
- bra t_frcinx
- ATANBORS:
- |--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
- |--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
- cmpil #0x3FFF8000,%d0
- bgt ATANBIG | ...I.E. |X| >= 16
- ATANSM:
- |--|X| <= 1/16
- |--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
- |--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
- |--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
- |--WHERE Y = X*X, AND Z = Y*Y.
- cmpil #0x3FD78000,%d0
- blt ATANTINY
- |--COMPUTE POLYNOMIAL
- fmulx %fp0,%fp0 | ...FP0 IS Y = X*X
- movew #0x0000,XDCARE(%a6)
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y
- fmoved ATANB6,%fp2
- fmoved ATANB5,%fp3
- fmulx %fp1,%fp2 | ...Z*B6
- fmulx %fp1,%fp3 | ...Z*B5
- faddd ATANB4,%fp2 | ...B4+Z*B6
- faddd ATANB3,%fp3 | ...B3+Z*B5
- fmulx %fp1,%fp2 | ...Z*(B4+Z*B6)
- fmulx %fp3,%fp1 | ...Z*(B3+Z*B5)
- faddd ATANB2,%fp2 | ...B2+Z*(B4+Z*B6)
- faddd ATANB1,%fp1 | ...B1+Z*(B3+Z*B5)
- fmulx %fp0,%fp2 | ...Y*(B2+Z*(B4+Z*B6))
- fmulx X(%a6),%fp0 | ...X*Y
- faddx %fp2,%fp1 | ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
- fmulx %fp1,%fp0 | ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
- fmovel %d1,%FPCR |restore users exceptions
- faddx X(%a6),%fp0
- bra t_frcinx
- ATANTINY:
- |--|X| < 2^(-40), ATAN(X) = X
- movew #0x0000,XDCARE(%a6)
- fmovel %d1,%FPCR |restore users exceptions
- fmovex X(%a6),%fp0 |last inst - possible exception set
- bra t_frcinx
- ATANBIG:
- |--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
- |--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
- cmpil #0x40638000,%d0
- bgt ATANHUGE
- |--APPROXIMATE ATAN(-1/X) BY
- |--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
- |--THIS CAN BE RE-WRITTEN AS
- |--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
- fmoves #0xBF800000,%fp1 | ...LOAD -1
- fdivx %fp0,%fp1 | ...FP1 IS -1/X
- |--DIVIDE IS STILL CRANKING
- fmovex %fp1,%fp0 | ...FP0 IS X'
- fmulx %fp0,%fp0 | ...FP0 IS Y = X'*X'
- fmovex %fp1,X(%a6) | ...X IS REALLY X'
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y
- fmoved ATANC5,%fp3
- fmoved ATANC4,%fp2
- fmulx %fp1,%fp3 | ...Z*C5
- fmulx %fp1,%fp2 | ...Z*B4
- faddd ATANC3,%fp3 | ...C3+Z*C5
- faddd ATANC2,%fp2 | ...C2+Z*C4
- fmulx %fp3,%fp1 | ...Z*(C3+Z*C5), FP3 RELEASED
- fmulx %fp0,%fp2 | ...Y*(C2+Z*C4)
- faddd ATANC1,%fp1 | ...C1+Z*(C3+Z*C5)
- fmulx X(%a6),%fp0 | ...X'*Y
- faddx %fp2,%fp1 | ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
- fmulx %fp1,%fp0 | ...X'*Y*([B1+Z*(B3+Z*B5)]
- | ... +[Y*(B2+Z*(B4+Z*B6))])
- faddx X(%a6),%fp0
- fmovel %d1,%FPCR |restore users exceptions
- btstb #7,(%a0)
- beqs pos_big
- neg_big:
- faddx NPIBY2,%fp0
- bra t_frcinx
- pos_big:
- faddx PPIBY2,%fp0
- bra t_frcinx
- ATANHUGE:
- |--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
- btstb #7,(%a0)
- beqs pos_huge
- neg_huge:
- fmovex NPIBY2,%fp0
- fmovel %d1,%fpcr
- fsubx NTINY,%fp0
- bra t_frcinx
- pos_huge:
- fmovex PPIBY2,%fp0
- fmovel %d1,%fpcr
- fsubx PTINY,%fp0
- bra t_frcinx
- |end
|