rtc-ab-b5ze-s3.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030
  1. /*
  2. * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
  3. * I2C RTC / Alarm chip
  4. *
  5. * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
  6. *
  7. * Detailed datasheet of the chip is available here:
  8. *
  9. * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
  10. *
  11. * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rtc.h>
  26. #include <linux/i2c.h>
  27. #include <linux/bcd.h>
  28. #include <linux/of.h>
  29. #include <linux/regmap.h>
  30. #include <linux/interrupt.h>
  31. #define DRV_NAME "rtc-ab-b5ze-s3"
  32. /* Control section */
  33. #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
  34. #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
  35. #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
  36. #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
  37. #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
  38. #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
  39. #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
  40. #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
  41. #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
  42. #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
  43. #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
  44. #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
  45. #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
  46. #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
  47. #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
  48. #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
  49. #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
  50. #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
  51. #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
  52. #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
  53. #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
  54. #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
  55. #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
  56. #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
  57. #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
  58. #define ABB5ZES3_CTRL_SEC_LEN 3
  59. /* RTC section */
  60. #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
  61. #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
  62. #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
  63. #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
  64. #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
  65. #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
  66. #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
  67. #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
  68. #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
  69. #define ABB5ZES3_RTC_SEC_LEN 7
  70. /* Alarm section (enable bits are all active low) */
  71. #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
  72. #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
  73. #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
  74. #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
  75. #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
  76. #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
  77. #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
  78. #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
  79. #define ABB5ZES3_ALRM_SEC_LEN 4
  80. /* Frequency offset section */
  81. #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
  82. #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
  83. /* CLOCKOUT section */
  84. #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
  85. #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
  86. #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
  87. #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
  88. #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
  89. #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
  90. #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
  91. #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
  92. #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
  93. /* Timer A Section */
  94. #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
  95. #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
  96. #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
  97. #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
  98. #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
  99. #define ABB5ZES3_TIMA_SEC_LEN 2
  100. /* Timer B Section */
  101. #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
  102. #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
  103. #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
  104. #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
  105. #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
  106. #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
  107. #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
  108. #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
  109. #define ABB5ZES3_TIMB_SEC_LEN 2
  110. #define ABB5ZES3_MEM_MAP_LEN 0x14
  111. struct abb5zes3_rtc_data {
  112. struct rtc_device *rtc;
  113. struct regmap *regmap;
  114. struct mutex lock;
  115. int irq;
  116. bool battery_low;
  117. bool timer_alarm; /* current alarm is via timer A */
  118. };
  119. /*
  120. * Try and match register bits w/ fixed null values to see whether we
  121. * are dealing with an ABB5ZES3. Note: this function is called early
  122. * during init and hence does need mutex protection.
  123. */
  124. static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
  125. {
  126. u8 regs[ABB5ZES3_MEM_MAP_LEN];
  127. static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
  128. 0x80, 0xc0, 0xc0, 0xf8,
  129. 0xe0, 0x00, 0x00, 0x40,
  130. 0x40, 0x78, 0x00, 0x00,
  131. 0xf8, 0x00, 0x88, 0x00 };
  132. int ret, i;
  133. ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
  134. if (ret)
  135. return ret;
  136. for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
  137. if (regs[i] & mask[i]) /* check if bits are cleared */
  138. return -ENODEV;
  139. }
  140. return 0;
  141. }
  142. /* Clear alarm status bit. */
  143. static int _abb5zes3_rtc_clear_alarm(struct device *dev)
  144. {
  145. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  146. int ret;
  147. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  148. ABB5ZES3_REG_CTRL2_AF, 0);
  149. if (ret)
  150. dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
  151. return ret;
  152. }
  153. /* Enable or disable alarm (i.e. alarm interrupt generation) */
  154. static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
  155. {
  156. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  157. int ret;
  158. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
  159. ABB5ZES3_REG_CTRL1_AIE,
  160. enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
  161. if (ret)
  162. dev_err(dev, "%s: writing alarm INT failed (%d)\n",
  163. __func__, ret);
  164. return ret;
  165. }
  166. /* Enable or disable timer (watchdog timer A interrupt generation) */
  167. static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
  168. {
  169. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  170. int ret;
  171. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  172. ABB5ZES3_REG_CTRL2_WTAIE,
  173. enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
  174. if (ret)
  175. dev_err(dev, "%s: writing timer INT failed (%d)\n",
  176. __func__, ret);
  177. return ret;
  178. }
  179. /*
  180. * Note: we only read, so regmap inner lock protection is sufficient, i.e.
  181. * we do not need driver's main lock protection.
  182. */
  183. static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
  184. {
  185. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  186. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  187. int ret = 0;
  188. /*
  189. * As we need to read CTRL1 register anyway to access 24/12h
  190. * mode bit, we do a single bulk read of both control and RTC
  191. * sections (they are consecutive). This also ease indexing
  192. * of register values after bulk read.
  193. */
  194. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
  195. sizeof(regs));
  196. if (ret) {
  197. dev_err(dev, "%s: reading RTC time failed (%d)\n",
  198. __func__, ret);
  199. goto err;
  200. }
  201. /* If clock integrity is not guaranteed, do not return a time value */
  202. if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
  203. ret = -ENODATA;
  204. goto err;
  205. }
  206. tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
  207. tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
  208. if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
  209. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
  210. if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
  211. tm->tm_hour += 12;
  212. } else { /* 24hr mode */
  213. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
  214. }
  215. tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
  216. tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
  217. tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
  218. tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
  219. err:
  220. return ret;
  221. }
  222. static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
  223. {
  224. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  225. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  226. int ret;
  227. regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
  228. regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
  229. regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
  230. regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
  231. regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
  232. regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
  233. regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
  234. mutex_lock(&data->lock);
  235. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
  236. regs + ABB5ZES3_REG_RTC_SC,
  237. ABB5ZES3_RTC_SEC_LEN);
  238. mutex_unlock(&data->lock);
  239. return ret;
  240. }
  241. /*
  242. * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
  243. * given number of seconds.
  244. */
  245. static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
  246. {
  247. *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
  248. *timer_a = secs;
  249. }
  250. /*
  251. * Return current number of seconds in Timer A. As we only use
  252. * timer A with a 1Hz freq, this is what we expect to have.
  253. */
  254. static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
  255. {
  256. if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
  257. return -EINVAL;
  258. *secs = timer_a;
  259. return 0;
  260. }
  261. /*
  262. * Read alarm currently configured via a watchdog timer using timer A. This
  263. * is done by reading current RTC time and adding remaining timer time.
  264. */
  265. static int _abb5zes3_rtc_read_timer(struct device *dev,
  266. struct rtc_wkalrm *alarm)
  267. {
  268. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  269. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  270. u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
  271. unsigned long rtc_secs;
  272. unsigned int reg;
  273. u8 timer_secs;
  274. int ret;
  275. /*
  276. * Instead of doing two separate calls, because they are consecutive,
  277. * we grab both clockout register and Timer A section. The latter is
  278. * used to decide if timer A is enabled (as a watchdog timer).
  279. */
  280. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
  281. ABB5ZES3_TIMA_SEC_LEN + 1);
  282. if (ret) {
  283. dev_err(dev, "%s: reading Timer A section failed (%d)\n",
  284. __func__, ret);
  285. goto err;
  286. }
  287. /* get current time ... */
  288. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  289. if (ret)
  290. goto err;
  291. /* ... convert to seconds ... */
  292. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  293. if (ret)
  294. goto err;
  295. /* ... add remaining timer A time ... */
  296. ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
  297. if (ret)
  298. goto err;
  299. /* ... and convert back. */
  300. rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
  301. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
  302. if (ret) {
  303. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  304. __func__, ret);
  305. goto err;
  306. }
  307. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
  308. err:
  309. return ret;
  310. }
  311. /* Read alarm currently configured via a RTC alarm registers. */
  312. static int _abb5zes3_rtc_read_alarm(struct device *dev,
  313. struct rtc_wkalrm *alarm)
  314. {
  315. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  316. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  317. unsigned long rtc_secs, alarm_secs;
  318. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  319. unsigned int reg;
  320. int ret;
  321. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  322. ABB5ZES3_ALRM_SEC_LEN);
  323. if (ret) {
  324. dev_err(dev, "%s: reading alarm section failed (%d)\n",
  325. __func__, ret);
  326. goto err;
  327. }
  328. alarm_tm->tm_sec = 0;
  329. alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
  330. alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
  331. alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
  332. alarm_tm->tm_wday = -1;
  333. /*
  334. * The alarm section does not store year/month. We use the ones in rtc
  335. * section as a basis and increment month and then year if needed to get
  336. * alarm after current time.
  337. */
  338. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  339. if (ret)
  340. goto err;
  341. alarm_tm->tm_year = rtc_tm.tm_year;
  342. alarm_tm->tm_mon = rtc_tm.tm_mon;
  343. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  344. if (ret)
  345. goto err;
  346. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  347. if (ret)
  348. goto err;
  349. if (alarm_secs < rtc_secs) {
  350. if (alarm_tm->tm_mon == 11) {
  351. alarm_tm->tm_mon = 0;
  352. alarm_tm->tm_year += 1;
  353. } else {
  354. alarm_tm->tm_mon += 1;
  355. }
  356. }
  357. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
  358. if (ret) {
  359. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  360. __func__, ret);
  361. goto err;
  362. }
  363. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
  364. err:
  365. return ret;
  366. }
  367. /*
  368. * As the Alarm mechanism supported by the chip is only accurate to the
  369. * minute, we use the watchdog timer mechanism provided by timer A
  370. * (up to 256 seconds w/ a second accuracy) for low alarm values (below
  371. * 4 minutes). Otherwise, we use the common alarm mechanism provided
  372. * by the chip. In order for that to work, we keep track of currently
  373. * configured timer type via 'timer_alarm' flag in our private data
  374. * structure.
  375. */
  376. static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  377. {
  378. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  379. int ret;
  380. mutex_lock(&data->lock);
  381. if (data->timer_alarm)
  382. ret = _abb5zes3_rtc_read_timer(dev, alarm);
  383. else
  384. ret = _abb5zes3_rtc_read_alarm(dev, alarm);
  385. mutex_unlock(&data->lock);
  386. return ret;
  387. }
  388. /*
  389. * Set alarm using chip alarm mechanism. It is only accurate to the
  390. * minute (not the second). The function expects alarm interrupt to
  391. * be disabled.
  392. */
  393. static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  394. {
  395. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  396. struct rtc_time *alarm_tm = &alarm->time;
  397. unsigned long rtc_secs, alarm_secs;
  398. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  399. struct rtc_time rtc_tm;
  400. int ret, enable = 1;
  401. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  402. if (ret)
  403. goto err;
  404. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  405. if (ret)
  406. goto err;
  407. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  408. if (ret)
  409. goto err;
  410. /* If alarm time is before current time, disable the alarm */
  411. if (!alarm->enabled || alarm_secs <= rtc_secs) {
  412. enable = 0;
  413. } else {
  414. /*
  415. * Chip only support alarms up to one month in the future. Let's
  416. * return an error if we get something after that limit.
  417. * Comparison is done by incrementing rtc_tm month field by one
  418. * and checking alarm value is still below.
  419. */
  420. if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
  421. rtc_tm.tm_mon = 0;
  422. rtc_tm.tm_year += 1;
  423. } else {
  424. rtc_tm.tm_mon += 1;
  425. }
  426. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  427. if (ret)
  428. goto err;
  429. if (alarm_secs > rtc_secs) {
  430. dev_err(dev, "%s: alarm maximum is one month in the "
  431. "future (%d)\n", __func__, ret);
  432. ret = -EINVAL;
  433. goto err;
  434. }
  435. }
  436. /*
  437. * Program all alarm registers but DW one. For each register, setting
  438. * MSB to 0 enables associated alarm.
  439. */
  440. regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
  441. regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
  442. regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
  443. regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
  444. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  445. ABB5ZES3_ALRM_SEC_LEN);
  446. if (ret < 0) {
  447. dev_err(dev, "%s: writing ALARM section failed (%d)\n",
  448. __func__, ret);
  449. goto err;
  450. }
  451. /* Record currently configured alarm is not a timer */
  452. data->timer_alarm = 0;
  453. /* Enable or disable alarm interrupt generation */
  454. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  455. err:
  456. return ret;
  457. }
  458. /*
  459. * Set alarm using timer watchdog (via timer A) mechanism. The function expects
  460. * timer A interrupt to be disabled.
  461. */
  462. static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
  463. u8 secs)
  464. {
  465. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  466. u8 regs[ABB5ZES3_TIMA_SEC_LEN];
  467. u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
  468. int ret = 0;
  469. /* Program given number of seconds to Timer A registers */
  470. sec_to_timer_a(secs, &regs[0], &regs[1]);
  471. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
  472. ABB5ZES3_TIMA_SEC_LEN);
  473. if (ret < 0) {
  474. dev_err(dev, "%s: writing timer section failed\n", __func__);
  475. goto err;
  476. }
  477. /* Configure Timer A as a watchdog timer */
  478. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
  479. mask, ABB5ZES3_REG_TIM_CLK_TAC1);
  480. if (ret)
  481. dev_err(dev, "%s: failed to update timer\n", __func__);
  482. /* Record currently configured alarm is a timer */
  483. data->timer_alarm = 1;
  484. /* Enable or disable timer interrupt generation */
  485. ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
  486. err:
  487. return ret;
  488. }
  489. /*
  490. * The chip has an alarm which is only accurate to the minute. In order to
  491. * handle alarms below that limit, we use the watchdog timer function of
  492. * timer A. More precisely, the timer method is used for alarms below 240
  493. * seconds.
  494. */
  495. static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  496. {
  497. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  498. struct rtc_time *alarm_tm = &alarm->time;
  499. unsigned long rtc_secs, alarm_secs;
  500. struct rtc_time rtc_tm;
  501. int ret;
  502. mutex_lock(&data->lock);
  503. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  504. if (ret)
  505. goto err;
  506. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  507. if (ret)
  508. goto err;
  509. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  510. if (ret)
  511. goto err;
  512. /* Let's first disable both the alarm and the timer interrupts */
  513. ret = _abb5zes3_rtc_update_alarm(dev, false);
  514. if (ret < 0) {
  515. dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
  516. ret);
  517. goto err;
  518. }
  519. ret = _abb5zes3_rtc_update_timer(dev, false);
  520. if (ret < 0) {
  521. dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
  522. ret);
  523. goto err;
  524. }
  525. data->timer_alarm = 0;
  526. /*
  527. * Let's now configure the alarm; if we are expected to ring in
  528. * more than 240s, then we setup an alarm. Otherwise, a timer.
  529. */
  530. if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
  531. ret = _abb5zes3_rtc_set_timer(dev, alarm,
  532. alarm_secs - rtc_secs);
  533. else
  534. ret = _abb5zes3_rtc_set_alarm(dev, alarm);
  535. err:
  536. mutex_unlock(&data->lock);
  537. if (ret)
  538. dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
  539. ret);
  540. return ret;
  541. }
  542. /* Enable or disable battery low irq generation */
  543. static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
  544. bool enable)
  545. {
  546. return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
  547. ABB5ZES3_REG_CTRL3_BLIE,
  548. enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
  549. }
  550. /*
  551. * Check current RTC status and enable/disable what needs to be. Return 0 if
  552. * everything went ok and a negative value upon error. Note: this function
  553. * is called early during init and hence does need mutex protection.
  554. */
  555. static int abb5zes3_rtc_check_setup(struct device *dev)
  556. {
  557. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  558. struct regmap *regmap = data->regmap;
  559. unsigned int reg;
  560. int ret;
  561. u8 mask;
  562. /*
  563. * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
  564. * is disabled here to prevent polluting the interrupt line and
  565. * uselessly triggering the IRQ handler we install for alarm and battery
  566. * low events. Note: this is done before clearing int. status below
  567. * in this function.
  568. * We also disable all timers and set timer interrupt to permanent (not
  569. * pulsed).
  570. */
  571. mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
  572. ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
  573. ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
  574. ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
  575. ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
  576. ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
  577. ABB5ZES3_REG_TIM_CLK_COF2);
  578. if (ret < 0) {
  579. dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
  580. __func__, ret);
  581. return ret;
  582. }
  583. /*
  584. * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
  585. * individually by clearing/setting MSB of each associated register. So,
  586. * we set all alarm enable bits to disable current alarm setting.
  587. */
  588. mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
  589. ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
  590. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
  591. if (ret < 0) {
  592. dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
  593. __func__, ret);
  594. return ret;
  595. }
  596. /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
  597. mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
  598. ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
  599. ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
  600. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
  601. if (ret < 0) {
  602. dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
  603. __func__, ret);
  604. return ret;
  605. }
  606. /*
  607. * Set Control 2 register (timer int. disabled, alarm status cleared).
  608. * WTAF is read-only and cleared automatically by reading the register.
  609. */
  610. mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
  611. ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
  612. ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
  613. ABB5ZES3_REG_CTRL2_CTAF);
  614. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
  615. if (ret < 0) {
  616. dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
  617. __func__, ret);
  618. return ret;
  619. }
  620. /*
  621. * Enable battery low detection function and battery switchover function
  622. * (standard mode). Disable associated interrupts. Clear battery
  623. * switchover flag but not battery low flag. The latter is checked
  624. * later below.
  625. */
  626. mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
  627. ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
  628. ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
  629. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
  630. if (ret < 0) {
  631. dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
  632. __func__, ret);
  633. return ret;
  634. }
  635. /* Check oscillator integrity flag */
  636. ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
  637. if (ret < 0) {
  638. dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
  639. __func__, ret);
  640. return ret;
  641. }
  642. if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
  643. dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
  644. "or has been interrupted.\n");
  645. dev_err(dev, "change battery (if not already done) and "
  646. "then set time to reset osc. failure flag.\n");
  647. }
  648. /*
  649. * Check battery low flag at startup: this allows reporting battery
  650. * is low at startup when IRQ line is not connected. Note: we record
  651. * current status to avoid reenabling this interrupt later in probe
  652. * function if battery is low.
  653. */
  654. ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
  655. if (ret < 0) {
  656. dev_err(dev, "%s: unable to read battery low flag (%d)\n",
  657. __func__, ret);
  658. return ret;
  659. }
  660. data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
  661. if (data->battery_low) {
  662. dev_err(dev, "RTC battery is low; please, consider "
  663. "changing it!\n");
  664. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
  665. if (ret)
  666. dev_err(dev, "%s: disabling battery low interrupt "
  667. "generation failed (%d)\n", __func__, ret);
  668. }
  669. return ret;
  670. }
  671. static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
  672. unsigned int enable)
  673. {
  674. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  675. int ret = 0;
  676. if (rtc_data->irq) {
  677. mutex_lock(&rtc_data->lock);
  678. if (rtc_data->timer_alarm)
  679. ret = _abb5zes3_rtc_update_timer(dev, enable);
  680. else
  681. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  682. mutex_unlock(&rtc_data->lock);
  683. }
  684. return ret;
  685. }
  686. static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
  687. {
  688. struct i2c_client *client = data;
  689. struct device *dev = &client->dev;
  690. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  691. struct rtc_device *rtc = rtc_data->rtc;
  692. u8 regs[ABB5ZES3_CTRL_SEC_LEN];
  693. int ret, handled = IRQ_NONE;
  694. ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
  695. ABB5ZES3_CTRL_SEC_LEN);
  696. if (ret) {
  697. dev_err(dev, "%s: unable to read control section (%d)!\n",
  698. __func__, ret);
  699. return handled;
  700. }
  701. /*
  702. * Check battery low detection flag and disable battery low interrupt
  703. * generation if flag is set (interrupt can only be cleared when
  704. * battery is replaced).
  705. */
  706. if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
  707. dev_err(dev, "RTC battery is low; please change it!\n");
  708. _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
  709. handled = IRQ_HANDLED;
  710. }
  711. /* Check alarm flag */
  712. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
  713. dev_dbg(dev, "RTC alarm!\n");
  714. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  715. /* Acknowledge and disable the alarm */
  716. _abb5zes3_rtc_clear_alarm(dev);
  717. _abb5zes3_rtc_update_alarm(dev, 0);
  718. handled = IRQ_HANDLED;
  719. }
  720. /* Check watchdog Timer A flag */
  721. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
  722. dev_dbg(dev, "RTC timer!\n");
  723. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  724. /*
  725. * Acknowledge and disable the alarm. Note: WTAF
  726. * flag had been cleared when reading CTRL2
  727. */
  728. _abb5zes3_rtc_update_timer(dev, 0);
  729. rtc_data->timer_alarm = 0;
  730. handled = IRQ_HANDLED;
  731. }
  732. return handled;
  733. }
  734. static const struct rtc_class_ops rtc_ops = {
  735. .read_time = _abb5zes3_rtc_read_time,
  736. .set_time = abb5zes3_rtc_set_time,
  737. .read_alarm = abb5zes3_rtc_read_alarm,
  738. .set_alarm = abb5zes3_rtc_set_alarm,
  739. .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
  740. };
  741. static const struct regmap_config abb5zes3_rtc_regmap_config = {
  742. .reg_bits = 8,
  743. .val_bits = 8,
  744. };
  745. static int abb5zes3_probe(struct i2c_client *client,
  746. const struct i2c_device_id *id)
  747. {
  748. struct abb5zes3_rtc_data *data = NULL;
  749. struct device *dev = &client->dev;
  750. struct regmap *regmap;
  751. int ret;
  752. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
  753. I2C_FUNC_SMBUS_BYTE_DATA |
  754. I2C_FUNC_SMBUS_I2C_BLOCK)) {
  755. ret = -ENODEV;
  756. goto err;
  757. }
  758. regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
  759. if (IS_ERR(regmap)) {
  760. ret = PTR_ERR(regmap);
  761. dev_err(dev, "%s: regmap allocation failed: %d\n",
  762. __func__, ret);
  763. goto err;
  764. }
  765. ret = abb5zes3_i2c_validate_chip(regmap);
  766. if (ret)
  767. goto err;
  768. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  769. if (!data) {
  770. ret = -ENOMEM;
  771. goto err;
  772. }
  773. mutex_init(&data->lock);
  774. data->regmap = regmap;
  775. dev_set_drvdata(dev, data);
  776. ret = abb5zes3_rtc_check_setup(dev);
  777. if (ret)
  778. goto err;
  779. data->rtc = devm_rtc_allocate_device(dev);
  780. ret = PTR_ERR_OR_ZERO(data->rtc);
  781. if (ret) {
  782. dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
  783. __func__, ret);
  784. goto err;
  785. }
  786. if (client->irq > 0) {
  787. ret = devm_request_threaded_irq(dev, client->irq, NULL,
  788. _abb5zes3_rtc_interrupt,
  789. IRQF_SHARED|IRQF_ONESHOT,
  790. DRV_NAME, client);
  791. if (!ret) {
  792. device_init_wakeup(dev, true);
  793. data->irq = client->irq;
  794. dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
  795. client->irq);
  796. } else {
  797. dev_err(dev, "%s: irq %d unavailable (%d)\n",
  798. __func__, client->irq, ret);
  799. goto err;
  800. }
  801. }
  802. data->rtc->ops = &rtc_ops;
  803. data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
  804. data->rtc->range_max = RTC_TIMESTAMP_END_2099;
  805. /* Enable battery low detection interrupt if battery not already low */
  806. if (!data->battery_low && data->irq) {
  807. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
  808. if (ret) {
  809. dev_err(dev, "%s: enabling battery low interrupt "
  810. "generation failed (%d)\n", __func__, ret);
  811. goto err;
  812. }
  813. }
  814. ret = rtc_register_device(data->rtc);
  815. err:
  816. if (ret && data && data->irq)
  817. device_init_wakeup(dev, false);
  818. return ret;
  819. }
  820. static int abb5zes3_remove(struct i2c_client *client)
  821. {
  822. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
  823. if (rtc_data->irq > 0)
  824. device_init_wakeup(&client->dev, false);
  825. return 0;
  826. }
  827. #ifdef CONFIG_PM_SLEEP
  828. static int abb5zes3_rtc_suspend(struct device *dev)
  829. {
  830. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  831. if (device_may_wakeup(dev))
  832. return enable_irq_wake(rtc_data->irq);
  833. return 0;
  834. }
  835. static int abb5zes3_rtc_resume(struct device *dev)
  836. {
  837. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  838. if (device_may_wakeup(dev))
  839. return disable_irq_wake(rtc_data->irq);
  840. return 0;
  841. }
  842. #endif
  843. static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
  844. abb5zes3_rtc_resume);
  845. #ifdef CONFIG_OF
  846. static const struct of_device_id abb5zes3_dt_match[] = {
  847. { .compatible = "abracon,abb5zes3" },
  848. { },
  849. };
  850. MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
  851. #endif
  852. static const struct i2c_device_id abb5zes3_id[] = {
  853. { "abb5zes3", 0 },
  854. { }
  855. };
  856. MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
  857. static struct i2c_driver abb5zes3_driver = {
  858. .driver = {
  859. .name = DRV_NAME,
  860. .pm = &abb5zes3_rtc_pm_ops,
  861. .of_match_table = of_match_ptr(abb5zes3_dt_match),
  862. },
  863. .probe = abb5zes3_probe,
  864. .remove = abb5zes3_remove,
  865. .id_table = abb5zes3_id,
  866. };
  867. module_i2c_driver(abb5zes3_driver);
  868. MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
  869. MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
  870. MODULE_LICENSE("GPL");