1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030 |
- /*
- * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
- * I2C RTC / Alarm chip
- *
- * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
- *
- * Detailed datasheet of the chip is available here:
- *
- * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
- *
- * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/rtc.h>
- #include <linux/i2c.h>
- #include <linux/bcd.h>
- #include <linux/of.h>
- #include <linux/regmap.h>
- #include <linux/interrupt.h>
- #define DRV_NAME "rtc-ab-b5ze-s3"
- /* Control section */
- #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
- #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
- #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
- #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
- #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
- #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
- #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
- #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
- #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
- #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
- #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
- #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
- #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
- #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
- #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
- #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
- #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
- #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
- #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
- #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
- #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
- #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
- #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
- #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
- #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
- #define ABB5ZES3_CTRL_SEC_LEN 3
- /* RTC section */
- #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
- #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
- #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
- #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
- #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
- #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
- #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
- #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
- #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
- #define ABB5ZES3_RTC_SEC_LEN 7
- /* Alarm section (enable bits are all active low) */
- #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
- #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
- #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
- #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
- #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
- #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
- #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
- #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
- #define ABB5ZES3_ALRM_SEC_LEN 4
- /* Frequency offset section */
- #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
- #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
- /* CLOCKOUT section */
- #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
- #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
- #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
- #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
- #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
- #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
- #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
- #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
- #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
- /* Timer A Section */
- #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
- #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
- #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
- #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
- #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
- #define ABB5ZES3_TIMA_SEC_LEN 2
- /* Timer B Section */
- #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
- #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
- #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
- #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
- #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
- #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
- #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
- #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
- #define ABB5ZES3_TIMB_SEC_LEN 2
- #define ABB5ZES3_MEM_MAP_LEN 0x14
- struct abb5zes3_rtc_data {
- struct rtc_device *rtc;
- struct regmap *regmap;
- struct mutex lock;
- int irq;
- bool battery_low;
- bool timer_alarm; /* current alarm is via timer A */
- };
- /*
- * Try and match register bits w/ fixed null values to see whether we
- * are dealing with an ABB5ZES3. Note: this function is called early
- * during init and hence does need mutex protection.
- */
- static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
- {
- u8 regs[ABB5ZES3_MEM_MAP_LEN];
- static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
- 0x80, 0xc0, 0xc0, 0xf8,
- 0xe0, 0x00, 0x00, 0x40,
- 0x40, 0x78, 0x00, 0x00,
- 0xf8, 0x00, 0x88, 0x00 };
- int ret, i;
- ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
- if (ret)
- return ret;
- for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
- if (regs[i] & mask[i]) /* check if bits are cleared */
- return -ENODEV;
- }
- return 0;
- }
- /* Clear alarm status bit. */
- static int _abb5zes3_rtc_clear_alarm(struct device *dev)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- int ret;
- ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
- ABB5ZES3_REG_CTRL2_AF, 0);
- if (ret)
- dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
- return ret;
- }
- /* Enable or disable alarm (i.e. alarm interrupt generation) */
- static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- int ret;
- ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
- ABB5ZES3_REG_CTRL1_AIE,
- enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
- if (ret)
- dev_err(dev, "%s: writing alarm INT failed (%d)\n",
- __func__, ret);
- return ret;
- }
- /* Enable or disable timer (watchdog timer A interrupt generation) */
- static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- int ret;
- ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
- ABB5ZES3_REG_CTRL2_WTAIE,
- enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
- if (ret)
- dev_err(dev, "%s: writing timer INT failed (%d)\n",
- __func__, ret);
- return ret;
- }
- /*
- * Note: we only read, so regmap inner lock protection is sufficient, i.e.
- * we do not need driver's main lock protection.
- */
- static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
- int ret = 0;
- /*
- * As we need to read CTRL1 register anyway to access 24/12h
- * mode bit, we do a single bulk read of both control and RTC
- * sections (they are consecutive). This also ease indexing
- * of register values after bulk read.
- */
- ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
- sizeof(regs));
- if (ret) {
- dev_err(dev, "%s: reading RTC time failed (%d)\n",
- __func__, ret);
- goto err;
- }
- /* If clock integrity is not guaranteed, do not return a time value */
- if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
- ret = -ENODATA;
- goto err;
- }
- tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
- tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
- if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
- tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
- if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
- tm->tm_hour += 12;
- } else { /* 24hr mode */
- tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
- }
- tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
- tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
- tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
- tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
- err:
- return ret;
- }
- static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
- int ret;
- regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
- regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
- regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
- regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
- regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
- regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
- regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
- mutex_lock(&data->lock);
- ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
- regs + ABB5ZES3_REG_RTC_SC,
- ABB5ZES3_RTC_SEC_LEN);
- mutex_unlock(&data->lock);
- return ret;
- }
- /*
- * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
- * given number of seconds.
- */
- static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
- {
- *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
- *timer_a = secs;
- }
- /*
- * Return current number of seconds in Timer A. As we only use
- * timer A with a 1Hz freq, this is what we expect to have.
- */
- static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
- {
- if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
- return -EINVAL;
- *secs = timer_a;
- return 0;
- }
- /*
- * Read alarm currently configured via a watchdog timer using timer A. This
- * is done by reading current RTC time and adding remaining timer time.
- */
- static int _abb5zes3_rtc_read_timer(struct device *dev,
- struct rtc_wkalrm *alarm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
- u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
- unsigned long rtc_secs;
- unsigned int reg;
- u8 timer_secs;
- int ret;
- /*
- * Instead of doing two separate calls, because they are consecutive,
- * we grab both clockout register and Timer A section. The latter is
- * used to decide if timer A is enabled (as a watchdog timer).
- */
- ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
- ABB5ZES3_TIMA_SEC_LEN + 1);
- if (ret) {
- dev_err(dev, "%s: reading Timer A section failed (%d)\n",
- __func__, ret);
- goto err;
- }
- /* get current time ... */
- ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
- if (ret)
- goto err;
- /* ... convert to seconds ... */
- ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
- if (ret)
- goto err;
- /* ... add remaining timer A time ... */
- ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
- if (ret)
- goto err;
- /* ... and convert back. */
- rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
- ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®);
- if (ret) {
- dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
- __func__, ret);
- goto err;
- }
- alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
- err:
- return ret;
- }
- /* Read alarm currently configured via a RTC alarm registers. */
- static int _abb5zes3_rtc_read_alarm(struct device *dev,
- struct rtc_wkalrm *alarm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
- unsigned long rtc_secs, alarm_secs;
- u8 regs[ABB5ZES3_ALRM_SEC_LEN];
- unsigned int reg;
- int ret;
- ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
- ABB5ZES3_ALRM_SEC_LEN);
- if (ret) {
- dev_err(dev, "%s: reading alarm section failed (%d)\n",
- __func__, ret);
- goto err;
- }
- alarm_tm->tm_sec = 0;
- alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
- alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
- alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
- alarm_tm->tm_wday = -1;
- /*
- * The alarm section does not store year/month. We use the ones in rtc
- * section as a basis and increment month and then year if needed to get
- * alarm after current time.
- */
- ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
- if (ret)
- goto err;
- alarm_tm->tm_year = rtc_tm.tm_year;
- alarm_tm->tm_mon = rtc_tm.tm_mon;
- ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
- if (ret)
- goto err;
- ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
- if (ret)
- goto err;
- if (alarm_secs < rtc_secs) {
- if (alarm_tm->tm_mon == 11) {
- alarm_tm->tm_mon = 0;
- alarm_tm->tm_year += 1;
- } else {
- alarm_tm->tm_mon += 1;
- }
- }
- ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®);
- if (ret) {
- dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
- __func__, ret);
- goto err;
- }
- alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
- err:
- return ret;
- }
- /*
- * As the Alarm mechanism supported by the chip is only accurate to the
- * minute, we use the watchdog timer mechanism provided by timer A
- * (up to 256 seconds w/ a second accuracy) for low alarm values (below
- * 4 minutes). Otherwise, we use the common alarm mechanism provided
- * by the chip. In order for that to work, we keep track of currently
- * configured timer type via 'timer_alarm' flag in our private data
- * structure.
- */
- static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- int ret;
- mutex_lock(&data->lock);
- if (data->timer_alarm)
- ret = _abb5zes3_rtc_read_timer(dev, alarm);
- else
- ret = _abb5zes3_rtc_read_alarm(dev, alarm);
- mutex_unlock(&data->lock);
- return ret;
- }
- /*
- * Set alarm using chip alarm mechanism. It is only accurate to the
- * minute (not the second). The function expects alarm interrupt to
- * be disabled.
- */
- static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- struct rtc_time *alarm_tm = &alarm->time;
- unsigned long rtc_secs, alarm_secs;
- u8 regs[ABB5ZES3_ALRM_SEC_LEN];
- struct rtc_time rtc_tm;
- int ret, enable = 1;
- ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
- if (ret)
- goto err;
- ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
- if (ret)
- goto err;
- ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
- if (ret)
- goto err;
- /* If alarm time is before current time, disable the alarm */
- if (!alarm->enabled || alarm_secs <= rtc_secs) {
- enable = 0;
- } else {
- /*
- * Chip only support alarms up to one month in the future. Let's
- * return an error if we get something after that limit.
- * Comparison is done by incrementing rtc_tm month field by one
- * and checking alarm value is still below.
- */
- if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
- rtc_tm.tm_mon = 0;
- rtc_tm.tm_year += 1;
- } else {
- rtc_tm.tm_mon += 1;
- }
- ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
- if (ret)
- goto err;
- if (alarm_secs > rtc_secs) {
- dev_err(dev, "%s: alarm maximum is one month in the "
- "future (%d)\n", __func__, ret);
- ret = -EINVAL;
- goto err;
- }
- }
- /*
- * Program all alarm registers but DW one. For each register, setting
- * MSB to 0 enables associated alarm.
- */
- regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
- regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
- regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
- regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
- ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
- ABB5ZES3_ALRM_SEC_LEN);
- if (ret < 0) {
- dev_err(dev, "%s: writing ALARM section failed (%d)\n",
- __func__, ret);
- goto err;
- }
- /* Record currently configured alarm is not a timer */
- data->timer_alarm = 0;
- /* Enable or disable alarm interrupt generation */
- ret = _abb5zes3_rtc_update_alarm(dev, enable);
- err:
- return ret;
- }
- /*
- * Set alarm using timer watchdog (via timer A) mechanism. The function expects
- * timer A interrupt to be disabled.
- */
- static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
- u8 secs)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- u8 regs[ABB5ZES3_TIMA_SEC_LEN];
- u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
- int ret = 0;
- /* Program given number of seconds to Timer A registers */
- sec_to_timer_a(secs, ®s[0], ®s[1]);
- ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
- ABB5ZES3_TIMA_SEC_LEN);
- if (ret < 0) {
- dev_err(dev, "%s: writing timer section failed\n", __func__);
- goto err;
- }
- /* Configure Timer A as a watchdog timer */
- ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
- mask, ABB5ZES3_REG_TIM_CLK_TAC1);
- if (ret)
- dev_err(dev, "%s: failed to update timer\n", __func__);
- /* Record currently configured alarm is a timer */
- data->timer_alarm = 1;
- /* Enable or disable timer interrupt generation */
- ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
- err:
- return ret;
- }
- /*
- * The chip has an alarm which is only accurate to the minute. In order to
- * handle alarms below that limit, we use the watchdog timer function of
- * timer A. More precisely, the timer method is used for alarms below 240
- * seconds.
- */
- static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- struct rtc_time *alarm_tm = &alarm->time;
- unsigned long rtc_secs, alarm_secs;
- struct rtc_time rtc_tm;
- int ret;
- mutex_lock(&data->lock);
- ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
- if (ret)
- goto err;
- ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
- if (ret)
- goto err;
- ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
- if (ret)
- goto err;
- /* Let's first disable both the alarm and the timer interrupts */
- ret = _abb5zes3_rtc_update_alarm(dev, false);
- if (ret < 0) {
- dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
- ret);
- goto err;
- }
- ret = _abb5zes3_rtc_update_timer(dev, false);
- if (ret < 0) {
- dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
- ret);
- goto err;
- }
- data->timer_alarm = 0;
- /*
- * Let's now configure the alarm; if we are expected to ring in
- * more than 240s, then we setup an alarm. Otherwise, a timer.
- */
- if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
- ret = _abb5zes3_rtc_set_timer(dev, alarm,
- alarm_secs - rtc_secs);
- else
- ret = _abb5zes3_rtc_set_alarm(dev, alarm);
- err:
- mutex_unlock(&data->lock);
- if (ret)
- dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
- ret);
- return ret;
- }
- /* Enable or disable battery low irq generation */
- static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
- bool enable)
- {
- return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
- ABB5ZES3_REG_CTRL3_BLIE,
- enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
- }
- /*
- * Check current RTC status and enable/disable what needs to be. Return 0 if
- * everything went ok and a negative value upon error. Note: this function
- * is called early during init and hence does need mutex protection.
- */
- static int abb5zes3_rtc_check_setup(struct device *dev)
- {
- struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
- struct regmap *regmap = data->regmap;
- unsigned int reg;
- int ret;
- u8 mask;
- /*
- * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
- * is disabled here to prevent polluting the interrupt line and
- * uselessly triggering the IRQ handler we install for alarm and battery
- * low events. Note: this is done before clearing int. status below
- * in this function.
- * We also disable all timers and set timer interrupt to permanent (not
- * pulsed).
- */
- mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
- ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
- ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
- ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
- ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
- ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
- ABB5ZES3_REG_TIM_CLK_COF2);
- if (ret < 0) {
- dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
- __func__, ret);
- return ret;
- }
- /*
- * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
- * individually by clearing/setting MSB of each associated register. So,
- * we set all alarm enable bits to disable current alarm setting.
- */
- mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
- ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
- ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
- if (ret < 0) {
- dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
- __func__, ret);
- return ret;
- }
- /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
- mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
- ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
- ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
- ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
- if (ret < 0) {
- dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
- __func__, ret);
- return ret;
- }
- /*
- * Set Control 2 register (timer int. disabled, alarm status cleared).
- * WTAF is read-only and cleared automatically by reading the register.
- */
- mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
- ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
- ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
- ABB5ZES3_REG_CTRL2_CTAF);
- ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
- if (ret < 0) {
- dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
- __func__, ret);
- return ret;
- }
- /*
- * Enable battery low detection function and battery switchover function
- * (standard mode). Disable associated interrupts. Clear battery
- * switchover flag but not battery low flag. The latter is checked
- * later below.
- */
- mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
- ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
- ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
- ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
- if (ret < 0) {
- dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
- __func__, ret);
- return ret;
- }
- /* Check oscillator integrity flag */
- ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®);
- if (ret < 0) {
- dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
- __func__, ret);
- return ret;
- }
- if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
- dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
- "or has been interrupted.\n");
- dev_err(dev, "change battery (if not already done) and "
- "then set time to reset osc. failure flag.\n");
- }
- /*
- * Check battery low flag at startup: this allows reporting battery
- * is low at startup when IRQ line is not connected. Note: we record
- * current status to avoid reenabling this interrupt later in probe
- * function if battery is low.
- */
- ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®);
- if (ret < 0) {
- dev_err(dev, "%s: unable to read battery low flag (%d)\n",
- __func__, ret);
- return ret;
- }
- data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
- if (data->battery_low) {
- dev_err(dev, "RTC battery is low; please, consider "
- "changing it!\n");
- ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
- if (ret)
- dev_err(dev, "%s: disabling battery low interrupt "
- "generation failed (%d)\n", __func__, ret);
- }
- return ret;
- }
- static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
- unsigned int enable)
- {
- struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
- int ret = 0;
- if (rtc_data->irq) {
- mutex_lock(&rtc_data->lock);
- if (rtc_data->timer_alarm)
- ret = _abb5zes3_rtc_update_timer(dev, enable);
- else
- ret = _abb5zes3_rtc_update_alarm(dev, enable);
- mutex_unlock(&rtc_data->lock);
- }
- return ret;
- }
- static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
- {
- struct i2c_client *client = data;
- struct device *dev = &client->dev;
- struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
- struct rtc_device *rtc = rtc_data->rtc;
- u8 regs[ABB5ZES3_CTRL_SEC_LEN];
- int ret, handled = IRQ_NONE;
- ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
- ABB5ZES3_CTRL_SEC_LEN);
- if (ret) {
- dev_err(dev, "%s: unable to read control section (%d)!\n",
- __func__, ret);
- return handled;
- }
- /*
- * Check battery low detection flag and disable battery low interrupt
- * generation if flag is set (interrupt can only be cleared when
- * battery is replaced).
- */
- if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
- dev_err(dev, "RTC battery is low; please change it!\n");
- _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
- handled = IRQ_HANDLED;
- }
- /* Check alarm flag */
- if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
- dev_dbg(dev, "RTC alarm!\n");
- rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
- /* Acknowledge and disable the alarm */
- _abb5zes3_rtc_clear_alarm(dev);
- _abb5zes3_rtc_update_alarm(dev, 0);
- handled = IRQ_HANDLED;
- }
- /* Check watchdog Timer A flag */
- if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
- dev_dbg(dev, "RTC timer!\n");
- rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
- /*
- * Acknowledge and disable the alarm. Note: WTAF
- * flag had been cleared when reading CTRL2
- */
- _abb5zes3_rtc_update_timer(dev, 0);
- rtc_data->timer_alarm = 0;
- handled = IRQ_HANDLED;
- }
- return handled;
- }
- static const struct rtc_class_ops rtc_ops = {
- .read_time = _abb5zes3_rtc_read_time,
- .set_time = abb5zes3_rtc_set_time,
- .read_alarm = abb5zes3_rtc_read_alarm,
- .set_alarm = abb5zes3_rtc_set_alarm,
- .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
- };
- static const struct regmap_config abb5zes3_rtc_regmap_config = {
- .reg_bits = 8,
- .val_bits = 8,
- };
- static int abb5zes3_probe(struct i2c_client *client,
- const struct i2c_device_id *id)
- {
- struct abb5zes3_rtc_data *data = NULL;
- struct device *dev = &client->dev;
- struct regmap *regmap;
- int ret;
- if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
- I2C_FUNC_SMBUS_BYTE_DATA |
- I2C_FUNC_SMBUS_I2C_BLOCK)) {
- ret = -ENODEV;
- goto err;
- }
- regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
- if (IS_ERR(regmap)) {
- ret = PTR_ERR(regmap);
- dev_err(dev, "%s: regmap allocation failed: %d\n",
- __func__, ret);
- goto err;
- }
- ret = abb5zes3_i2c_validate_chip(regmap);
- if (ret)
- goto err;
- data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
- if (!data) {
- ret = -ENOMEM;
- goto err;
- }
- mutex_init(&data->lock);
- data->regmap = regmap;
- dev_set_drvdata(dev, data);
- ret = abb5zes3_rtc_check_setup(dev);
- if (ret)
- goto err;
- data->rtc = devm_rtc_allocate_device(dev);
- ret = PTR_ERR_OR_ZERO(data->rtc);
- if (ret) {
- dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
- __func__, ret);
- goto err;
- }
- if (client->irq > 0) {
- ret = devm_request_threaded_irq(dev, client->irq, NULL,
- _abb5zes3_rtc_interrupt,
- IRQF_SHARED|IRQF_ONESHOT,
- DRV_NAME, client);
- if (!ret) {
- device_init_wakeup(dev, true);
- data->irq = client->irq;
- dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
- client->irq);
- } else {
- dev_err(dev, "%s: irq %d unavailable (%d)\n",
- __func__, client->irq, ret);
- goto err;
- }
- }
- data->rtc->ops = &rtc_ops;
- data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
- data->rtc->range_max = RTC_TIMESTAMP_END_2099;
- /* Enable battery low detection interrupt if battery not already low */
- if (!data->battery_low && data->irq) {
- ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
- if (ret) {
- dev_err(dev, "%s: enabling battery low interrupt "
- "generation failed (%d)\n", __func__, ret);
- goto err;
- }
- }
- ret = rtc_register_device(data->rtc);
- err:
- if (ret && data && data->irq)
- device_init_wakeup(dev, false);
- return ret;
- }
- static int abb5zes3_remove(struct i2c_client *client)
- {
- struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
- if (rtc_data->irq > 0)
- device_init_wakeup(&client->dev, false);
- return 0;
- }
- #ifdef CONFIG_PM_SLEEP
- static int abb5zes3_rtc_suspend(struct device *dev)
- {
- struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
- if (device_may_wakeup(dev))
- return enable_irq_wake(rtc_data->irq);
- return 0;
- }
- static int abb5zes3_rtc_resume(struct device *dev)
- {
- struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
- if (device_may_wakeup(dev))
- return disable_irq_wake(rtc_data->irq);
- return 0;
- }
- #endif
- static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
- abb5zes3_rtc_resume);
- #ifdef CONFIG_OF
- static const struct of_device_id abb5zes3_dt_match[] = {
- { .compatible = "abracon,abb5zes3" },
- { },
- };
- MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
- #endif
- static const struct i2c_device_id abb5zes3_id[] = {
- { "abb5zes3", 0 },
- { }
- };
- MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
- static struct i2c_driver abb5zes3_driver = {
- .driver = {
- .name = DRV_NAME,
- .pm = &abb5zes3_rtc_pm_ops,
- .of_match_table = of_match_ptr(abb5zes3_dt_match),
- },
- .probe = abb5zes3_probe,
- .remove = abb5zes3_remove,
- .id_table = abb5zes3_id,
- };
- module_i2c_driver(abb5zes3_driver);
- MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
- MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
- MODULE_LICENSE("GPL");
|