123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912 |
- // SPDX-License-Identifier: GPL-2.0
- /* Copyright(c) 2007 - 2018 Intel Corporation. */
- /* e1000_i210
- * e1000_i211
- */
- #include <linux/types.h>
- #include <linux/if_ether.h>
- #include "e1000_hw.h"
- #include "e1000_i210.h"
- static s32 igb_update_flash_i210(struct e1000_hw *hw);
- /**
- * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- */
- static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
- {
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = rd32(E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- udelay(50);
- i++;
- }
- if (i == timeout) {
- /* In rare circumstances, the SW semaphore may already be held
- * unintentionally. Clear the semaphore once before giving up.
- */
- if (hw->dev_spec._82575.clear_semaphore_once) {
- hw->dev_spec._82575.clear_semaphore_once = false;
- igb_put_hw_semaphore(hw);
- for (i = 0; i < timeout; i++) {
- swsm = rd32(E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- udelay(50);
- }
- }
- /* If we do not have the semaphore here, we have to give up. */
- if (i == timeout) {
- hw_dbg("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
- }
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = rd32(E1000_SWSM);
- wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
- /* Semaphore acquired if bit latched */
- if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
- udelay(50);
- }
- if (i == timeout) {
- /* Release semaphores */
- igb_put_hw_semaphore(hw);
- hw_dbg("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
- return 0;
- }
- /**
- * igb_acquire_nvm_i210 - Request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
- static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
- {
- return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
- }
- /**
- * igb_release_nvm_i210 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- **/
- static void igb_release_nvm_i210(struct e1000_hw *hw)
- {
- igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
- }
- /**
- * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
- s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
- {
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 ret_val = 0;
- s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
- while (i < timeout) {
- if (igb_get_hw_semaphore_i210(hw)) {
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
- swfw_sync = rd32(E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
- /* Firmware currently using resource (fwmask) */
- igb_put_hw_semaphore(hw);
- mdelay(5);
- i++;
- }
- if (i == timeout) {
- hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
- swfw_sync |= swmask;
- wr32(E1000_SW_FW_SYNC, swfw_sync);
- igb_put_hw_semaphore(hw);
- out:
- return ret_val;
- }
- /**
- * igb_release_swfw_sync_i210 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
- void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
- {
- u32 swfw_sync;
- while (igb_get_hw_semaphore_i210(hw))
- ; /* Empty */
- swfw_sync = rd32(E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- wr32(E1000_SW_FW_SYNC, swfw_sync);
- igb_put_hw_semaphore(hw);
- }
- /**
- * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the Shadow Ram to read
- * @words: number of words to read
- * @data: word read from the Shadow Ram
- *
- * Reads a 16 bit word from the Shadow Ram using the EERD register.
- * Uses necessary synchronization semaphores.
- **/
- static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- s32 status = 0;
- u16 i, count;
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to read in bursts than synchronizing access for each word.
- */
- for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
- E1000_EERD_EEWR_MAX_COUNT : (words - i);
- if (!(hw->nvm.ops.acquire(hw))) {
- status = igb_read_nvm_eerd(hw, offset, count,
- data + i);
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
- if (status)
- break;
- }
- return status;
- }
- /**
- * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow Ram to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow Ram
- *
- * Writes data to Shadow Ram at offset using EEWR register.
- *
- * If igb_update_nvm_checksum is not called after this function , the
- * Shadow Ram will most likely contain an invalid checksum.
- **/
- static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, k, eewr = 0;
- u32 attempts = 100000;
- s32 ret_val = 0;
- /* A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- hw_dbg("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
- for (i = 0; i < words; i++) {
- eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
- (data[i] << E1000_NVM_RW_REG_DATA) |
- E1000_NVM_RW_REG_START;
- wr32(E1000_SRWR, eewr);
- for (k = 0; k < attempts; k++) {
- if (E1000_NVM_RW_REG_DONE &
- rd32(E1000_SRWR)) {
- ret_val = 0;
- break;
- }
- udelay(5);
- }
- if (ret_val) {
- hw_dbg("Shadow RAM write EEWR timed out\n");
- break;
- }
- }
- out:
- return ret_val;
- }
- /**
- * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow RAM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow RAM
- *
- * Writes data to Shadow RAM at offset using EEWR register.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * data will not be committed to FLASH and also Shadow RAM will most likely
- * contain an invalid checksum.
- *
- * If error code is returned, data and Shadow RAM may be inconsistent - buffer
- * partially written.
- **/
- static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- s32 status = 0;
- u16 i, count;
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to write in bursts than synchronizing access for each word.
- */
- for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
- E1000_EERD_EEWR_MAX_COUNT : (words - i);
- if (!(hw->nvm.ops.acquire(hw))) {
- status = igb_write_nvm_srwr(hw, offset, count,
- data + i);
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
- if (status)
- break;
- }
- return status;
- }
- /**
- * igb_read_invm_word_i210 - Reads OTP
- * @hw: pointer to the HW structure
- * @address: the word address (aka eeprom offset) to read
- * @data: pointer to the data read
- *
- * Reads 16-bit words from the OTP. Return error when the word is not
- * stored in OTP.
- **/
- static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
- {
- s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
- u32 invm_dword;
- u16 i;
- u8 record_type, word_address;
- for (i = 0; i < E1000_INVM_SIZE; i++) {
- invm_dword = rd32(E1000_INVM_DATA_REG(i));
- /* Get record type */
- record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
- if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
- break;
- if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
- i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
- if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
- i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
- if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
- word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
- if (word_address == address) {
- *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
- hw_dbg("Read INVM Word 0x%02x = %x\n",
- address, *data);
- status = 0;
- break;
- }
- }
- }
- if (status)
- hw_dbg("Requested word 0x%02x not found in OTP\n", address);
- return status;
- }
- /**
- * igb_read_invm_i210 - Read invm wrapper function for I210/I211
- * @hw: pointer to the HW structure
- * @words: number of words to read
- * @data: pointer to the data read
- *
- * Wrapper function to return data formerly found in the NVM.
- **/
- static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
- u16 words __always_unused, u16 *data)
- {
- s32 ret_val = 0;
- /* Only the MAC addr is required to be present in the iNVM */
- switch (offset) {
- case NVM_MAC_ADDR:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
- ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
- &data[1]);
- ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
- &data[2]);
- if (ret_val)
- hw_dbg("MAC Addr not found in iNVM\n");
- break;
- case NVM_INIT_CTRL_2:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val) {
- *data = NVM_INIT_CTRL_2_DEFAULT_I211;
- ret_val = 0;
- }
- break;
- case NVM_INIT_CTRL_4:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val) {
- *data = NVM_INIT_CTRL_4_DEFAULT_I211;
- ret_val = 0;
- }
- break;
- case NVM_LED_1_CFG:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val) {
- *data = NVM_LED_1_CFG_DEFAULT_I211;
- ret_val = 0;
- }
- break;
- case NVM_LED_0_2_CFG:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val) {
- *data = NVM_LED_0_2_CFG_DEFAULT_I211;
- ret_val = 0;
- }
- break;
- case NVM_ID_LED_SETTINGS:
- ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val) {
- *data = ID_LED_RESERVED_FFFF;
- ret_val = 0;
- }
- break;
- case NVM_SUB_DEV_ID:
- *data = hw->subsystem_device_id;
- break;
- case NVM_SUB_VEN_ID:
- *data = hw->subsystem_vendor_id;
- break;
- case NVM_DEV_ID:
- *data = hw->device_id;
- break;
- case NVM_VEN_ID:
- *data = hw->vendor_id;
- break;
- default:
- hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
- *data = NVM_RESERVED_WORD;
- break;
- }
- return ret_val;
- }
- /**
- * igb_read_invm_version - Reads iNVM version and image type
- * @hw: pointer to the HW structure
- * @invm_ver: version structure for the version read
- *
- * Reads iNVM version and image type.
- **/
- s32 igb_read_invm_version(struct e1000_hw *hw,
- struct e1000_fw_version *invm_ver) {
- u32 *record = NULL;
- u32 *next_record = NULL;
- u32 i = 0;
- u32 invm_dword = 0;
- u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
- E1000_INVM_RECORD_SIZE_IN_BYTES);
- u32 buffer[E1000_INVM_SIZE];
- s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
- u16 version = 0;
- /* Read iNVM memory */
- for (i = 0; i < E1000_INVM_SIZE; i++) {
- invm_dword = rd32(E1000_INVM_DATA_REG(i));
- buffer[i] = invm_dword;
- }
- /* Read version number */
- for (i = 1; i < invm_blocks; i++) {
- record = &buffer[invm_blocks - i];
- next_record = &buffer[invm_blocks - i + 1];
- /* Check if we have first version location used */
- if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
- version = 0;
- status = 0;
- break;
- }
- /* Check if we have second version location used */
- else if ((i == 1) &&
- ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
- version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
- status = 0;
- break;
- }
- /* Check if we have odd version location
- * used and it is the last one used
- */
- else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
- ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
- (i != 1))) {
- version = (*next_record & E1000_INVM_VER_FIELD_TWO)
- >> 13;
- status = 0;
- break;
- }
- /* Check if we have even version location
- * used and it is the last one used
- */
- else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
- ((*record & 0x3) == 0)) {
- version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
- status = 0;
- break;
- }
- }
- if (!status) {
- invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
- >> E1000_INVM_MAJOR_SHIFT;
- invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
- }
- /* Read Image Type */
- for (i = 1; i < invm_blocks; i++) {
- record = &buffer[invm_blocks - i];
- next_record = &buffer[invm_blocks - i + 1];
- /* Check if we have image type in first location used */
- if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
- invm_ver->invm_img_type = 0;
- status = 0;
- break;
- }
- /* Check if we have image type in first location used */
- else if ((((*record & 0x3) == 0) &&
- ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
- ((((*record & 0x3) != 0) && (i != 1)))) {
- invm_ver->invm_img_type =
- (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
- status = 0;
- break;
- }
- }
- return status;
- }
- /**
- * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
- static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
- {
- s32 status = 0;
- s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
- if (!(hw->nvm.ops.acquire(hw))) {
- /* Replace the read function with semaphore grabbing with
- * the one that skips this for a while.
- * We have semaphore taken already here.
- */
- read_op_ptr = hw->nvm.ops.read;
- hw->nvm.ops.read = igb_read_nvm_eerd;
- status = igb_validate_nvm_checksum(hw);
- /* Revert original read operation. */
- hw->nvm.ops.read = read_op_ptr;
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
- return status;
- }
- /**
- * igb_update_nvm_checksum_i210 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM. Next commit EEPROM data onto the Flash.
- **/
- static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- u16 checksum = 0;
- u16 i, nvm_data;
- /* Read the first word from the EEPROM. If this times out or fails, do
- * not continue or we could be in for a very long wait while every
- * EEPROM read fails
- */
- ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
- if (ret_val) {
- hw_dbg("EEPROM read failed\n");
- goto out;
- }
- if (!(hw->nvm.ops.acquire(hw))) {
- /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
- * because we do not want to take the synchronization
- * semaphores twice here.
- */
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
- if (ret_val) {
- hw->nvm.ops.release(hw);
- hw_dbg("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
- &checksum);
- if (ret_val) {
- hw->nvm.ops.release(hw);
- hw_dbg("NVM Write Error while updating checksum.\n");
- goto out;
- }
- hw->nvm.ops.release(hw);
- ret_val = igb_update_flash_i210(hw);
- } else {
- ret_val = -E1000_ERR_SWFW_SYNC;
- }
- out:
- return ret_val;
- }
- /**
- * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
- * @hw: pointer to the HW structure
- *
- **/
- static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
- {
- s32 ret_val = -E1000_ERR_NVM;
- u32 i, reg;
- for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
- reg = rd32(E1000_EECD);
- if (reg & E1000_EECD_FLUDONE_I210) {
- ret_val = 0;
- break;
- }
- udelay(5);
- }
- return ret_val;
- }
- /**
- * igb_get_flash_presence_i210 - Check if flash device is detected.
- * @hw: pointer to the HW structure
- *
- **/
- bool igb_get_flash_presence_i210(struct e1000_hw *hw)
- {
- u32 eec = 0;
- bool ret_val = false;
- eec = rd32(E1000_EECD);
- if (eec & E1000_EECD_FLASH_DETECTED_I210)
- ret_val = true;
- return ret_val;
- }
- /**
- * igb_update_flash_i210 - Commit EEPROM to the flash
- * @hw: pointer to the HW structure
- *
- **/
- static s32 igb_update_flash_i210(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- u32 flup;
- ret_val = igb_pool_flash_update_done_i210(hw);
- if (ret_val == -E1000_ERR_NVM) {
- hw_dbg("Flash update time out\n");
- goto out;
- }
- flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
- wr32(E1000_EECD, flup);
- ret_val = igb_pool_flash_update_done_i210(hw);
- if (ret_val)
- hw_dbg("Flash update time out\n");
- else
- hw_dbg("Flash update complete\n");
- out:
- return ret_val;
- }
- /**
- * igb_valid_led_default_i210 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
- s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
- {
- s32 ret_val;
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- hw_dbg("NVM Read Error\n");
- goto out;
- }
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch (hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_I210_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT_I210;
- break;
- }
- }
- out:
- return ret_val;
- }
- /**
- * __igb_access_xmdio_reg - Read/write XMDIO register
- * @hw: pointer to the HW structure
- * @address: XMDIO address to program
- * @dev_addr: device address to program
- * @data: pointer to value to read/write from/to the XMDIO address
- * @read: boolean flag to indicate read or write
- **/
- static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
- u8 dev_addr, u16 *data, bool read)
- {
- s32 ret_val = 0;
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
- dev_addr);
- if (ret_val)
- return ret_val;
- if (read)
- ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
- else
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
- if (ret_val)
- return ret_val;
- /* Recalibrate the device back to 0 */
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
- if (ret_val)
- return ret_val;
- return ret_val;
- }
- /**
- * igb_read_xmdio_reg - Read XMDIO register
- * @hw: pointer to the HW structure
- * @addr: XMDIO address to program
- * @dev_addr: device address to program
- * @data: value to be read from the EMI address
- **/
- s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
- {
- return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
- }
- /**
- * igb_write_xmdio_reg - Write XMDIO register
- * @hw: pointer to the HW structure
- * @addr: XMDIO address to program
- * @dev_addr: device address to program
- * @data: value to be written to the XMDIO address
- **/
- s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
- {
- return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
- }
- /**
- * igb_init_nvm_params_i210 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
- s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- struct e1000_nvm_info *nvm = &hw->nvm;
- nvm->ops.acquire = igb_acquire_nvm_i210;
- nvm->ops.release = igb_release_nvm_i210;
- nvm->ops.valid_led_default = igb_valid_led_default_i210;
- /* NVM Function Pointers */
- if (igb_get_flash_presence_i210(hw)) {
- hw->nvm.type = e1000_nvm_flash_hw;
- nvm->ops.read = igb_read_nvm_srrd_i210;
- nvm->ops.write = igb_write_nvm_srwr_i210;
- nvm->ops.validate = igb_validate_nvm_checksum_i210;
- nvm->ops.update = igb_update_nvm_checksum_i210;
- } else {
- hw->nvm.type = e1000_nvm_invm;
- nvm->ops.read = igb_read_invm_i210;
- nvm->ops.write = NULL;
- nvm->ops.validate = NULL;
- nvm->ops.update = NULL;
- }
- return ret_val;
- }
- /**
- * igb_pll_workaround_i210
- * @hw: pointer to the HW structure
- *
- * Works around an errata in the PLL circuit where it occasionally
- * provides the wrong clock frequency after power up.
- **/
- s32 igb_pll_workaround_i210(struct e1000_hw *hw)
- {
- s32 ret_val;
- u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
- u16 nvm_word, phy_word, pci_word, tmp_nvm;
- int i;
- /* Get and set needed register values */
- wuc = rd32(E1000_WUC);
- mdicnfg = rd32(E1000_MDICNFG);
- reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
- wr32(E1000_MDICNFG, reg_val);
- /* Get data from NVM, or set default */
- ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
- &nvm_word);
- if (ret_val)
- nvm_word = E1000_INVM_DEFAULT_AL;
- tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
- igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
- phy_word = E1000_PHY_PLL_UNCONF;
- for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
- /* check current state directly from internal PHY */
- igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
- if ((phy_word & E1000_PHY_PLL_UNCONF)
- != E1000_PHY_PLL_UNCONF) {
- ret_val = 0;
- break;
- } else {
- ret_val = -E1000_ERR_PHY;
- }
- /* directly reset the internal PHY */
- ctrl = rd32(E1000_CTRL);
- wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
- ctrl_ext = rd32(E1000_CTRL_EXT);
- ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
- wr32(E1000_CTRL_EXT, ctrl_ext);
- wr32(E1000_WUC, 0);
- reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
- wr32(E1000_EEARBC_I210, reg_val);
- igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- pci_word |= E1000_PCI_PMCSR_D3;
- igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- usleep_range(1000, 2000);
- pci_word &= ~E1000_PCI_PMCSR_D3;
- igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
- wr32(E1000_EEARBC_I210, reg_val);
- /* restore WUC register */
- wr32(E1000_WUC, wuc);
- }
- igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
- /* restore MDICNFG setting */
- wr32(E1000_MDICNFG, mdicnfg);
- return ret_val;
- }
- /**
- * igb_get_cfg_done_i210 - Read config done bit
- * @hw: pointer to the HW structure
- *
- * Read the management control register for the config done bit for
- * completion status. NOTE: silicon which is EEPROM-less will fail trying
- * to read the config done bit, so an error is *ONLY* logged and returns
- * 0. If we were to return with error, EEPROM-less silicon
- * would not be able to be reset or change link.
- **/
- s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
- {
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
- while (timeout) {
- if (rd32(E1000_EEMNGCTL_I210) & mask)
- break;
- usleep_range(1000, 2000);
- timeout--;
- }
- if (!timeout)
- hw_dbg("MNG configuration cycle has not completed.\n");
- return 0;
- }
|