12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247 |
- /*
- * linux/arch/arm/vfp/vfpsingle.c
- *
- * This code is derived in part from John R. Housers softfloat library, which
- * carries the following notice:
- *
- * ===========================================================================
- * This C source file is part of the SoftFloat IEC/IEEE Floating-point
- * Arithmetic Package, Release 2.
- *
- * Written by John R. Hauser. This work was made possible in part by the
- * International Computer Science Institute, located at Suite 600, 1947 Center
- * Street, Berkeley, California 94704. Funding was partially provided by the
- * National Science Foundation under grant MIP-9311980. The original version
- * of this code was written as part of a project to build a fixed-point vector
- * processor in collaboration with the University of California at Berkeley,
- * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- * arithmetic/softfloat.html'.
- *
- * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- *
- * Derivative works are acceptable, even for commercial purposes, so long as
- * (1) they include prominent notice that the work is derivative, and (2) they
- * include prominent notice akin to these three paragraphs for those parts of
- * this code that are retained.
- * ===========================================================================
- */
- #include <linux/kernel.h>
- #include <linux/bitops.h>
- #include <asm/div64.h>
- #include <asm/vfp.h>
- #include "vfpinstr.h"
- #include "vfp.h"
- static struct vfp_single vfp_single_default_qnan = {
- .exponent = 255,
- .sign = 0,
- .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
- };
- static void vfp_single_dump(const char *str, struct vfp_single *s)
- {
- pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
- str, s->sign != 0, s->exponent, s->significand);
- }
- static void vfp_single_normalise_denormal(struct vfp_single *vs)
- {
- int bits = 31 - fls(vs->significand);
- vfp_single_dump("normalise_denormal: in", vs);
- if (bits) {
- vs->exponent -= bits - 1;
- vs->significand <<= bits;
- }
- vfp_single_dump("normalise_denormal: out", vs);
- }
- #ifndef DEBUG
- #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
- u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
- #else
- u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
- #endif
- {
- u32 significand, incr, rmode;
- int exponent, shift, underflow;
- vfp_single_dump("pack: in", vs);
- /*
- * Infinities and NaNs are a special case.
- */
- if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
- goto pack;
- /*
- * Special-case zero.
- */
- if (vs->significand == 0) {
- vs->exponent = 0;
- goto pack;
- }
- exponent = vs->exponent;
- significand = vs->significand;
- /*
- * Normalise first. Note that we shift the significand up to
- * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
- * significant bit.
- */
- shift = 32 - fls(significand);
- if (shift < 32 && shift) {
- exponent -= shift;
- significand <<= shift;
- }
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: normalised", vs);
- #endif
- /*
- * Tiny number?
- */
- underflow = exponent < 0;
- if (underflow) {
- significand = vfp_shiftright32jamming(significand, -exponent);
- exponent = 0;
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: tiny number", vs);
- #endif
- if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
- underflow = 0;
- }
- /*
- * Select rounding increment.
- */
- incr = 0;
- rmode = fpscr & FPSCR_RMODE_MASK;
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 1 << VFP_SINGLE_LOW_BITS;
- if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
- incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
- pr_debug("VFP: rounding increment = 0x%08x\n", incr);
- /*
- * Is our rounding going to overflow?
- */
- if ((significand + incr) < significand) {
- exponent += 1;
- significand = (significand >> 1) | (significand & 1);
- incr >>= 1;
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: overflow", vs);
- #endif
- }
- /*
- * If any of the low bits (which will be shifted out of the
- * number) are non-zero, the result is inexact.
- */
- if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
- exceptions |= FPSCR_IXC;
- /*
- * Do our rounding.
- */
- significand += incr;
- /*
- * Infinity?
- */
- if (exponent >= 254) {
- exceptions |= FPSCR_OFC | FPSCR_IXC;
- if (incr == 0) {
- vs->exponent = 253;
- vs->significand = 0x7fffffff;
- } else {
- vs->exponent = 255; /* infinity */
- vs->significand = 0;
- }
- } else {
- if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
- exponent = 0;
- if (exponent || significand > 0x80000000)
- underflow = 0;
- if (underflow)
- exceptions |= FPSCR_UFC;
- vs->exponent = exponent;
- vs->significand = significand >> 1;
- }
- pack:
- vfp_single_dump("pack: final", vs);
- {
- s32 d = vfp_single_pack(vs);
- #ifdef DEBUG
- pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
- sd, d, exceptions);
- #endif
- vfp_put_float(d, sd);
- }
- return exceptions;
- }
- /*
- * Propagate the NaN, setting exceptions if it is signalling.
- * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
- */
- static u32
- vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- struct vfp_single *nan;
- int tn, tm = 0;
- tn = vfp_single_type(vsn);
- if (vsm)
- tm = vfp_single_type(vsm);
- if (fpscr & FPSCR_DEFAULT_NAN)
- /*
- * Default NaN mode - always returns a quiet NaN
- */
- nan = &vfp_single_default_qnan;
- else {
- /*
- * Contemporary mode - select the first signalling
- * NAN, or if neither are signalling, the first
- * quiet NAN.
- */
- if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
- nan = vsn;
- else
- nan = vsm;
- /*
- * Make the NaN quiet.
- */
- nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
- }
- *vsd = *nan;
- /*
- * If one was a signalling NAN, raise invalid operation.
- */
- return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
- }
- /*
- * Extended operations
- */
- static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(vfp_single_packed_abs(m), sd);
- return 0;
- }
- static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(m, sd);
- return 0;
- }
- static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(vfp_single_packed_negate(m), sd);
- return 0;
- }
- static const u16 sqrt_oddadjust[] = {
- 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
- 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
- };
- static const u16 sqrt_evenadjust[] = {
- 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
- 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
- };
- u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
- {
- int index;
- u32 z, a;
- if ((significand & 0xc0000000) != 0x40000000) {
- pr_warn("VFP: estimate_sqrt: invalid significand\n");
- }
- a = significand << 1;
- index = (a >> 27) & 15;
- if (exponent & 1) {
- z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
- z = ((a / z) << 14) + (z << 15);
- a >>= 1;
- } else {
- z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
- z = a / z + z;
- z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
- if (z <= a)
- return (s32)a >> 1;
- }
- {
- u64 v = (u64)a << 31;
- do_div(v, z);
- return v + (z >> 1);
- }
- }
- static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm, vsd;
- int ret, tm;
- vfp_single_unpack(&vsm, m);
- tm = vfp_single_type(&vsm);
- if (tm & (VFP_NAN|VFP_INFINITY)) {
- struct vfp_single *vsp = &vsd;
- if (tm & VFP_NAN)
- ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
- else if (vsm.sign == 0) {
- sqrt_copy:
- vsp = &vsm;
- ret = 0;
- } else {
- sqrt_invalid:
- vsp = &vfp_single_default_qnan;
- ret = FPSCR_IOC;
- }
- vfp_put_float(vfp_single_pack(vsp), sd);
- return ret;
- }
- /*
- * sqrt(+/- 0) == +/- 0
- */
- if (tm & VFP_ZERO)
- goto sqrt_copy;
- /*
- * Normalise a denormalised number
- */
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- /*
- * sqrt(<0) = invalid
- */
- if (vsm.sign)
- goto sqrt_invalid;
- vfp_single_dump("sqrt", &vsm);
- /*
- * Estimate the square root.
- */
- vsd.sign = 0;
- vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
- vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
- vfp_single_dump("sqrt estimate", &vsd);
- /*
- * And now adjust.
- */
- if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
- if (vsd.significand < 2) {
- vsd.significand = 0xffffffff;
- } else {
- u64 term;
- s64 rem;
- vsm.significand <<= !(vsm.exponent & 1);
- term = (u64)vsd.significand * vsd.significand;
- rem = ((u64)vsm.significand << 32) - term;
- pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
- while (rem < 0) {
- vsd.significand -= 1;
- rem += ((u64)vsd.significand << 1) | 1;
- }
- vsd.significand |= rem != 0;
- }
- }
- vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
- return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
- }
- /*
- * Equal := ZC
- * Less than := N
- * Greater than := C
- * Unordered := CV
- */
- static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
- {
- s32 d;
- u32 ret = 0;
- d = vfp_get_float(sd);
- if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- if (ret == 0) {
- if (d == m || vfp_single_packed_abs(d | m) == 0) {
- /*
- * equal
- */
- ret |= FPSCR_Z | FPSCR_C;
- } else if (vfp_single_packed_sign(d ^ m)) {
- /*
- * different signs
- */
- if (vfp_single_packed_sign(d))
- /*
- * d is negative, so d < m
- */
- ret |= FPSCR_N;
- else
- /*
- * d is positive, so d > m
- */
- ret |= FPSCR_C;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
- /*
- * d < m
- */
- ret |= FPSCR_N;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
- /*
- * d > m
- */
- ret |= FPSCR_C;
- }
- }
- return ret;
- }
- static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 0, m, fpscr);
- }
- static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 1, m, fpscr);
- }
- static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 0, 0, fpscr);
- }
- static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 1, 0, fpscr);
- }
- static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- struct vfp_double vdd;
- int tm;
- u32 exceptions = 0;
- vfp_single_unpack(&vsm, m);
- tm = vfp_single_type(&vsm);
- /*
- * If we have a signalling NaN, signal invalid operation.
- */
- if (tm == VFP_SNAN)
- exceptions = FPSCR_IOC;
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- vdd.sign = vsm.sign;
- vdd.significand = (u64)vsm.significand << 32;
- /*
- * If we have an infinity or NaN, the exponent must be 2047.
- */
- if (tm & (VFP_INFINITY|VFP_NAN)) {
- vdd.exponent = 2047;
- if (tm == VFP_QNAN)
- vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
- goto pack_nan;
- } else if (tm & VFP_ZERO)
- vdd.exponent = 0;
- else
- vdd.exponent = vsm.exponent + (1023 - 127);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
- pack_nan:
- vfp_put_double(vfp_double_pack(&vdd), dd);
- return exceptions;
- }
- static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vs;
- vs.sign = 0;
- vs.exponent = 127 + 31 - 1;
- vs.significand = (u32)m;
- return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
- }
- static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vs;
- vs.sign = (m & 0x80000000) >> 16;
- vs.exponent = 127 + 31 - 1;
- vs.significand = vs.sign ? -m : m;
- return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
- }
- static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
- vfp_single_unpack(&vsm, m);
- vfp_single_dump("VSM", &vsm);
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_single_type(&vsm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (tm & VFP_NAN)
- vsm.sign = 0;
- if (vsm.exponent >= 127 + 32) {
- d = vsm.sign ? 0 : 0xffffffff;
- exceptions = FPSCR_IOC;
- } else if (vsm.exponent >= 127 - 1) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
- /*
- * 2^0 <= m < 2^32-2^8
- */
- d = (vsm.significand << 1) >> shift;
- rem = vsm.significand << (33 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
- if ((rem + incr) < rem) {
- if (d < 0xffffffff)
- d += 1;
- else
- exceptions |= FPSCR_IOC;
- }
- if (d && vsm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- }
- }
- }
- pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float(d, sd);
- return exceptions;
- }
- static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
- }
- static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
- vfp_single_unpack(&vsm, m);
- vfp_single_dump("VSM", &vsm);
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_single_type(&vsm);
- if (vfp_single_type(&vsm) & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (tm & VFP_NAN) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127 + 32) {
- /*
- * m >= 2^31-2^7: invalid
- */
- d = 0x7fffffff;
- if (vsm.sign)
- d = ~d;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127 - 1) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
- /* 2^0 <= m <= 2^31-2^7 */
- d = (vsm.significand << 1) >> shift;
- rem = vsm.significand << (33 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
- if ((rem + incr) < rem && d < 0xffffffff)
- d += 1;
- if (d > 0x7fffffff + (vsm.sign != 0)) {
- d = 0x7fffffff + (vsm.sign != 0);
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- if (vsm.sign)
- d = -d;
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
- d = -1;
- }
- }
- pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float((s32)d, sd);
- return exceptions;
- }
- static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
- }
- static struct op fops_ext[32] = {
- [FEXT_TO_IDX(FEXT_FCPY)] = { vfp_single_fcpy, 0 },
- [FEXT_TO_IDX(FEXT_FABS)] = { vfp_single_fabs, 0 },
- [FEXT_TO_IDX(FEXT_FNEG)] = { vfp_single_fneg, 0 },
- [FEXT_TO_IDX(FEXT_FSQRT)] = { vfp_single_fsqrt, 0 },
- [FEXT_TO_IDX(FEXT_FCMP)] = { vfp_single_fcmp, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FCMPE)] = { vfp_single_fcmpe, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FCMPZ)] = { vfp_single_fcmpz, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FCMPEZ)] = { vfp_single_fcmpez, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FCVT)] = { vfp_single_fcvtd, OP_SCALAR|OP_DD },
- [FEXT_TO_IDX(FEXT_FUITO)] = { vfp_single_fuito, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FSITO)] = { vfp_single_fsito, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FTOUI)] = { vfp_single_ftoui, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FTOUIZ)] = { vfp_single_ftouiz, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FTOSI)] = { vfp_single_ftosi, OP_SCALAR },
- [FEXT_TO_IDX(FEXT_FTOSIZ)] = { vfp_single_ftosiz, OP_SCALAR },
- };
- static u32
- vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- struct vfp_single *vsp;
- u32 exceptions = 0;
- int tn, tm;
- tn = vfp_single_type(vsn);
- tm = vfp_single_type(vsm);
- if (tn & tm & VFP_INFINITY) {
- /*
- * Two infinities. Are they different signs?
- */
- if (vsn->sign ^ vsm->sign) {
- /*
- * different signs -> invalid
- */
- exceptions = FPSCR_IOC;
- vsp = &vfp_single_default_qnan;
- } else {
- /*
- * same signs -> valid
- */
- vsp = vsn;
- }
- } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
- /*
- * One infinity and one number -> infinity
- */
- vsp = vsn;
- } else {
- /*
- * 'n' is a NaN of some type
- */
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- }
- *vsd = *vsp;
- return exceptions;
- }
- static u32
- vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- u32 exp_diff, m_sig;
- if (vsn->significand & 0x80000000 ||
- vsm->significand & 0x80000000) {
- pr_info("VFP: bad FP values in %s\n", __func__);
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
- }
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- struct vfp_single *t = vsn;
- vsn = vsm;
- vsm = t;
- }
- /*
- * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
- * infinity or a NaN here.
- */
- if (vsn->exponent == 255)
- return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
- /*
- * We have two proper numbers, where 'vsn' is the larger magnitude.
- *
- * Copy 'n' to 'd' before doing the arithmetic.
- */
- *vsd = *vsn;
- /*
- * Align both numbers.
- */
- exp_diff = vsn->exponent - vsm->exponent;
- m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
- /*
- * If the signs are different, we are really subtracting.
- */
- if (vsn->sign ^ vsm->sign) {
- m_sig = vsn->significand - m_sig;
- if ((s32)m_sig < 0) {
- vsd->sign = vfp_sign_negate(vsd->sign);
- m_sig = -m_sig;
- } else if (m_sig == 0) {
- vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
- FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
- }
- } else {
- m_sig = vsn->significand + m_sig;
- }
- vsd->significand = m_sig;
- return 0;
- }
- static u32
- vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
- {
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- struct vfp_single *t = vsn;
- vsn = vsm;
- vsm = t;
- pr_debug("VFP: swapping M <-> N\n");
- }
- vsd->sign = vsn->sign ^ vsm->sign;
- /*
- * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
- */
- if (vsn->exponent == 255) {
- if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- if ((vsm->exponent | vsm->significand) == 0) {
- *vsd = vfp_single_default_qnan;
- return FPSCR_IOC;
- }
- vsd->exponent = vsn->exponent;
- vsd->significand = 0;
- return 0;
- }
- /*
- * If 'm' is zero, the result is always zero. In this case,
- * 'n' may be zero or a number, but it doesn't matter which.
- */
- if ((vsm->exponent | vsm->significand) == 0) {
- vsd->exponent = 0;
- vsd->significand = 0;
- return 0;
- }
- /*
- * We add 2 to the destination exponent for the same reason as
- * the addition case - though this time we have +1 from each
- * input operand.
- */
- vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
- vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
- vfp_single_dump("VSD", vsd);
- return 0;
- }
- #define NEG_MULTIPLY (1 << 0)
- #define NEG_SUBTRACT (1 << 1)
- static u32
- vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
- {
- struct vfp_single vsd, vsp, vsn, vsm;
- u32 exceptions;
- s32 v;
- v = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, v);
- vfp_single_unpack(&vsn, v);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
- if (negate & NEG_MULTIPLY)
- vsp.sign = vfp_sign_negate(vsp.sign);
- v = vfp_get_float(sd);
- pr_debug("VFP: s%u = %08x\n", sd, v);
- vfp_single_unpack(&vsn, v);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- if (negate & NEG_SUBTRACT)
- vsn.sign = vfp_sign_negate(vsn.sign);
- exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
- }
- /*
- * Standard operations
- */
- /*
- * sd = sd + (sn * sm)
- */
- static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
- }
- /*
- * sd = sd - (sn * sm)
- */
- static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
- }
- /*
- * sd = -sd + (sn * sm)
- */
- static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
- }
- /*
- * sd = -sd - (sn * sm)
- */
- static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
- }
- /*
- * sd = sn * sm
- */
- static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
- }
- /*
- * sd = -(sn * sm)
- */
- static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- vsd.sign = vfp_sign_negate(vsd.sign);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
- }
- /*
- * sd = sn + sm
- */
- static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- /*
- * Unpack and normalise denormals.
- */
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
- }
- /*
- * sd = sn - sm
- */
- static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
- {
- /*
- * Subtraction is addition with one sign inverted.
- */
- return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
- }
- /*
- * sd = sn / sm
- */
- static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(sn);
- int tm, tn;
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- vfp_single_unpack(&vsm, m);
- vsd.sign = vsn.sign ^ vsm.sign;
- tn = vfp_single_type(&vsn);
- tm = vfp_single_type(&vsm);
- /*
- * Is n a NAN?
- */
- if (tn & VFP_NAN)
- goto vsn_nan;
- /*
- * Is m a NAN?
- */
- if (tm & VFP_NAN)
- goto vsm_nan;
- /*
- * If n and m are infinity, the result is invalid
- * If n and m are zero, the result is invalid
- */
- if (tm & tn & (VFP_INFINITY|VFP_ZERO))
- goto invalid;
- /*
- * If n is infinity, the result is infinity
- */
- if (tn & VFP_INFINITY)
- goto infinity;
- /*
- * If m is zero, raise div0 exception
- */
- if (tm & VFP_ZERO)
- goto divzero;
- /*
- * If m is infinity, or n is zero, the result is zero
- */
- if (tm & VFP_INFINITY || tn & VFP_ZERO)
- goto zero;
- if (tn & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsn);
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- /*
- * Ok, we have two numbers, we can perform division.
- */
- vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
- vsm.significand <<= 1;
- if (vsm.significand <= (2 * vsn.significand)) {
- vsn.significand >>= 1;
- vsd.exponent++;
- }
- {
- u64 significand = (u64)vsn.significand << 32;
- do_div(significand, vsm.significand);
- vsd.significand = significand;
- }
- if ((vsd.significand & 0x3f) == 0)
- vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
- return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
- vsn_nan:
- exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
- pack:
- vfp_put_float(vfp_single_pack(&vsd), sd);
- return exceptions;
- vsm_nan:
- exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
- goto pack;
- zero:
- vsd.exponent = 0;
- vsd.significand = 0;
- goto pack;
- divzero:
- exceptions = FPSCR_DZC;
- infinity:
- vsd.exponent = 255;
- vsd.significand = 0;
- goto pack;
- invalid:
- vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
- return FPSCR_IOC;
- }
- static struct op fops[16] = {
- [FOP_TO_IDX(FOP_FMAC)] = { vfp_single_fmac, 0 },
- [FOP_TO_IDX(FOP_FNMAC)] = { vfp_single_fnmac, 0 },
- [FOP_TO_IDX(FOP_FMSC)] = { vfp_single_fmsc, 0 },
- [FOP_TO_IDX(FOP_FNMSC)] = { vfp_single_fnmsc, 0 },
- [FOP_TO_IDX(FOP_FMUL)] = { vfp_single_fmul, 0 },
- [FOP_TO_IDX(FOP_FNMUL)] = { vfp_single_fnmul, 0 },
- [FOP_TO_IDX(FOP_FADD)] = { vfp_single_fadd, 0 },
- [FOP_TO_IDX(FOP_FSUB)] = { vfp_single_fsub, 0 },
- [FOP_TO_IDX(FOP_FDIV)] = { vfp_single_fdiv, 0 },
- };
- #define FREG_BANK(x) ((x) & 0x18)
- #define FREG_IDX(x) ((x) & 7)
- u32 vfp_single_cpdo(u32 inst, u32 fpscr)
- {
- u32 op = inst & FOP_MASK;
- u32 exceptions = 0;
- unsigned int dest;
- unsigned int sn = vfp_get_sn(inst);
- unsigned int sm = vfp_get_sm(inst);
- unsigned int vecitr, veclen, vecstride;
- struct op *fop;
- vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
- fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
- /*
- * fcvtsd takes a dN register number as destination, not sN.
- * Technically, if bit 0 of dd is set, this is an invalid
- * instruction. However, we ignore this for efficiency.
- * It also only operates on scalars.
- */
- if (fop->flags & OP_DD)
- dest = vfp_get_dd(inst);
- else
- dest = vfp_get_sd(inst);
- /*
- * If destination bank is zero, vector length is always '1'.
- * ARM DDI0100F C5.1.3, C5.3.2.
- */
- if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
- veclen = 0;
- else
- veclen = fpscr & FPSCR_LENGTH_MASK;
- pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
- (veclen >> FPSCR_LENGTH_BIT) + 1);
- if (!fop->fn)
- goto invalid;
- for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
- s32 m = vfp_get_float(sm);
- u32 except;
- char type;
- type = fop->flags & OP_DD ? 'd' : 's';
- if (op == FOP_EXT)
- pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
- vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
- sm, m);
- else
- pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
- vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
- FOP_TO_IDX(op), sm, m);
- except = fop->fn(dest, sn, m, fpscr);
- pr_debug("VFP: itr%d: exceptions=%08x\n",
- vecitr >> FPSCR_LENGTH_BIT, except);
- exceptions |= except;
- /*
- * CHECK: It appears to be undefined whether we stop when
- * we encounter an exception. We continue.
- */
- dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
- sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
- if (FREG_BANK(sm) != 0)
- sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
- }
- return exceptions;
- invalid:
- return (u32)-1;
- }
|