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Chapter 1
Gröbner Bases

The theory of Gröbner bases for ideals in polynomial rings was introduced by
Bruno Buchberger [1], who named the concept in honor of his advisor Wolfgang
Gröbner (1899–1980). Buchberger also developed the fundamental algorithm
for the computation of a Gröbner basis known as Buchberger’s algorithm.
A similar concept for ideals in power series rings was introduced by Heisuke
Hironaka [2], [3].

The theory is nowadays discussed in multiple books including [4] and [5].
We will follow these books along the way as we gradually unveil the elegance
and power of Gröbner bases in solving systems of polynomial equations. Fur-
ther information can be also found in [6] and [7].

1.1 Elementary algebraic structures

Let us introduce the rudiments of abstract algebra that will allow us to
progress towards the application of Gröbner bases in algebraic cryptanaly-
sis.

Definition 1.1.1. Let A1, . . . , An be sets. Then the Cartesian product
A1 × · · · × An is the set of all ordered n-tuples (aa, . . . , an) such that ai ∈ Ai
for 1 ≤ i ≤ n.

Definition 1.1.2. Let A and B be sets. A map is a set ϕ ⊆ A×B such that
for each a ∈ A there is exactly one b ∈ B with (a, b) ∈ ϕ.

Definition 1.1.3. Let A be a set. A binary operation is a map from A×A
to A.

Group theory is central to abstract algebra. We will use the definition
of a group to define the structures we will operate with throughout the rest
of our work — rings, ideals, and fields. Such an approach should make the
definitions of these structures shorter and emphasize their relations.

Let us first start with a definition of a simpler structure than a group:
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1. Gröbner Bases

Definition 1.1.4. A monoid is a set M with a binary operation (a, b) 7→ a◦b
such that the following two axioms hold:

(i) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈M ,

(ii) there is e ∈M such that e ◦ a = a ◦ e = a for all a ∈M .

A monoid is called a commutative monoid if, in addition to (i) and (ii),
the following axiom also holds:

(iii) a ◦ b = b ◦ a for all a, b ∈M .

Note that since ◦ is a binary operation, the resulting element, a◦b is always
in M for all a, b ∈M . We say that M is closed under ◦ or that ◦ is closed on
M . Also note that the first axiom is the associative property. The element e
is called the identity element or simply the identity. For simplicity, we will
refer to the set M as the monoid with the associated operation being implicit.
We will also use this convention for all the subsequent algebraic structures,
even when there will be multiple operations associated with the structure.

Definition 1.1.5. A group G is a monoid in which for all a ∈ G, there is
b ∈ G with a ◦ b = b ◦ a = e. A group G is an Abelian group if it is also a
commutative monoid.

The element b in the definition above is called the inverse of a. Note that
Abelian groups are commutative groups.

Definition 1.1.6. A ring is a set R with two binary operations (a, b) 7→ a+b
and (a, b) 7→ a · b, referred to as addition and multiplication, such that the
following axioms hold:

(i) the set R is an Abelian group under addition with the additive identity
0,

(ii) the set R is a monoid under multiplication with the multiplicative
identity 1,

(iii) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

A ring is a commutative ring if, under multiplication, R is a commutative
monoid.

The inverse under addition in a ring is called the additive inverse, and
the inverse under multiplication is the multiplicative inverse. Note that
the axiom (iii) describes the left and right distributive laws. We will usually
omit the symbol for multiplication, and instead of a · b, we will write ab.

Example 1.1.7.
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1.1. Elementary algebraic structures

(i) The sets Z, Q, R, and C are rings with their standard addition and
multiplication.

(ii) The natural numbers do not form a ring since not all elements have their
additive inverse in this set.

(iii) The set of integers modulo n ∈ Z, denoted Zn, is a ring.

Definition 1.1.8. Let R be a ring and ∅ 6= I ⊆ R. Then I is an ideal of R
if:

(i) a+ b ∈ I for all a, b ∈ I, and

(ii) ar ∈ I for all a ∈ I and r ∈ R.

The ideal I is proper if I 6= R.

Note that an ideal I of a ring R is closed under addition. It is also closed
under multiplication by any r ∈ R.

Proposition 1.1.9. Let I be an ideal of a commutative ring R, then:

(i) a · 0 = 0 · a = 0 for all a ∈ R.

(ii) 0 ∈ I, and

(iii) if 1 ∈ I then I is not proper.

Proof.

(i) Suppose a ∈ R. Then

a+ a · 0 = a · 1 + a · 0
= a (1 + 0)
= a · 1
= a.

Adding the additive inverse of a on both sides gives a · 0 = 0. Since R
is commutative, 0 · a = 0 also holds.

(ii) Considering the previous proof, by (i) of definition 1.1.6, we know that
0 ∈ R and by (ii) of definition 1.1.8, we get 0 · a = 0 ∈ I for any a ∈ I.

(iii) Since 1 is the multiplicative identity, we have 1 · r = r ∈ I for all r ∈ R
and thus I = R.
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1. Gröbner Bases

Remark 1.1.10. There is an analogy from modular arithmetic that illustrates
an intuitive view of ideals — they can be regarded as a generalization of a
zero in a number set such as the integers. Consider the ring Zn of integers
modulo a given integer n ∈ Z. The exact set of integers that we identify with
0 in Zn is the set nZ = {nm|m ∈ Z}. This set meets the criteria for being an
ideal ((i) and (ii) of definition 1.1.8) of Z and its elements “behave” like 0 in
Z: adding two elements of nZ yields another element of nZ and multiplying
any element of nZ again yields an element of nZ.

Considering our definition of rings, note that an ideal might not be a ring
itself. For example, consider the ring of integers and its ideal consisting of
even numbers. This ideal is not a ring since it has no multiplicative identity.

Definition 1.1.11. A field F is a ring where the set F \ {0} is an Abelian
group under multiplication with the multiplicative identity 1.

Fields with a finite number of elements are finite fields and are often
denoted Fq, where the number of elements q is the order of the field. Since
we will not encounter any rings that are not commutative, we will adopt the
convention that by a ring, we will mean a commutative ring. Then, the only
difference between rings and fields is that in a field, every element other than
0 has its multiplicative inverse. Note that every field is a ring as well.

Example 1.1.12.

(i) The sets Q, R, and C are fields with their standard addition and multi-
plication.

(ii) The integers do not form a field since not all elements have their multi-
plicative inverse in this set.

(iii) The set of integers modulo p ∈ Z, denoted Zp, is a field whenever p is
prime. The primality of p ensures that each non-zero element has its
multiplicative inverse.

We will often work with the finite field Z2, which merits a short comment.
We will denote this field F2. The additive and multiplicative identities are 0
and 1, respectively. The additive inverse of 0 is 0. The element 1 is also its
additive and multiplicative inverse.

1.2 Multivariate Polynomials

Definition 1.2.1. Let α = (α1, . . . , αn) be an n-tuple of non-negative inte-
gers. A monomial in x1, . . . , xn is a product of the form

n∏
i=1

xαi
i = xα1

1 · x
α2
2 · · ·x

αn
n .
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1.2. Multivariate Polynomials

Let us simplify the notation by setting

xα =
n∏
i=1

xαi
i .

The total degree of a monomial xα is the sum
∑n
i=1 αi. We simplify the

notation again an let |xα| denote the total degree of xα. We will call the
symbols x1, . . . , xn indeterminates or variables, depending on which context
we will need to emphasize. Note that xα = 1 when α = (0, . . . , 0) and also
when |xα| = 0. Also note that any monomial is fully determined by α.

Definition 1.2.2. Let xα be a monomial and let K be a field. A term with
a non-zero coefficient cα ∈ K is the product cαxα.

Definition 1.2.3. A polynomial f with coefficients in a field K is a finite
sum of terms in the form

f =
∑
α

cα · xα, cα ∈ K.

The zero polynomial will be denoted 0.

Definition 1.2.4. Let f =
∑
cαx

α 6= 0 be a non-zero polynomial. The total
degree of f , denoted deg(f), is the maximum |xα| such that the corresponding
coefficient cα is nonzero. The degree of 0 is undefined.

The set of all polynomials in x1, . . . , xn with coefficients in a field K will
be denoted K[x1, . . . , xn]. When the particular indeterminates are of no rel-
evance, we will denote the set by K[x] for short. We will also employ the
standard letters x, y and z instead of x1, x2 and x3 when we discuss illustra-
tive polynomials.

Let f, g ∈ K[x] be polynomials. We say that f divides g if g = fh for
some polynomial h ∈ K[x]. One can show that the set K[x] satisfies all of
the ring axioms under standard polynomial addition and multiplication. We
will therefore refer to K[x] as a polynomial ring. Not all polynomials in this
ring have their multiplicative inverses, e.g., even the elementary polynomial
x1 does not have its multiplicative inverse and so K[x] does not form a field.
A proof that K[x] forms a ring can be found in [4, Chapher 2], the authors
also provide a broader outlook on polynomials by defining them in a more
abstract way.

Definition 1.2.5. Let {f1, . . . , fs} ⊂ K[x] be a set of polynomials. Then we
set

〈f1, . . . , fs〉 =
{

s∑
i=1

hifi

∣∣∣∣ h1, . . . , hs ∈ K[x]
}
.

Lemma 1.2.6. If {f1, . . . , fs} ⊂ K[x] is a set of polynomials, then 〈f1, . . . , fs〉
is an ideal of K[x].
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1. Gröbner Bases

Proof. Assume f =
∑s
i=1 pifi and g =

∑s
i=1 qifi are polynomials, and let

also h ∈ K[x] be a polynomial. Then the equations

f + g =
s∑
i=1

(pi + qi) fi and

hf =
s∑
i=1

(hpi) fi

show that 〈f1, . . . , fs〉 meets the criteria for being an ideal of K[x].

Definition 1.2.7. Let {f1, . . . , fs} ⊂ K[x] be a set of polynomials and let I
be an ideal such that I = 〈f1, . . . , fs〉. The set {f1, . . . , fs} is a basis of I.
We will also call 〈f1, . . . , fs〉 the ideal generated by {f1, . . . , fs}.

Remark 1.1.10 provides an intuitive view of ideals through modular arith-
metic. Another analogy comes from linear algebra where the definition of
subspaces can be likened to the definition of ideals of polynomial rings. Both
are closed under addition. Subspaces are closed under multiplication by scalars
while ideals of polynomial rings are closed under multiplication by polynomi-
als. An ideal generated by a set of polynomials also shares similar properties
with a span generated by a set of vectors, which is a structure similar to
subspaces as well.

Definition 1.2.8. LetK be a field and n a positive integer. The n-dimensional
affine space over K is the set

Kn = {(a1, . . . , an) | a1, . . . , an ∈ K}.

Remark 1.2.9. A polynomial f ∈ K[x1, . . . , xn] can be regarded as a function
f : Kn 7→ K that takes in points in the affine space Kn and produces elements
of the field K.

Definition 1.2.10. Let Kn be an affine space and let f = f(x1, . . . , xn) ∈
K[x1, . . . , xn] be a polynomial. The zero point of f is a point (a1, . . . , an) ∈
Kn such that f(a1, . . . , an) = 0.

Definition 1.2.11. Let {f1, . . . , fs} ⊂ K[x1, . . . , xn] be a set of polynomi-
als and Kn an affine space. The affine variety V (f1, . . . , fs) defined by
{f1, . . . , fs} is the set

V (f1, . . . , fs) =
{

(a1, . . . , an) ∈ Kn
∣∣∣ fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s

}
of all zero points of all the polynomials in {f1, . . . , fs}.

Solving an equation that can be expressed as a polynomial in multiple vari-
ables can be seen as finding the zero points of the corresponding polynomial.
Affine varieties generalize this notion to systems of polynomial equations. Con-
sidering remark 1.2.9, we may also see varieties as geometric objects, which is
briefly illustrated by the following example:
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1.2. Multivariate Polynomials

Example 1.2.12. Consider the real coordinate space R2 and the polynomial
f = f

(
x2 + y2 − 1

)
. The variety V (f) is the unit circle centered at the origin.

We will use the following lemma to show that a given ideal is contained in
another one. This is useful for proving the equality of two ideals in example
1.2.14.

Lemma 1.2.13. Let I ⊆ K[x] be an ideal, and let {f1, . . . , fs} ⊂ K[x] be a
set of polynomials. Then 〈f1, . . . , fs〉 ⊆ I if and only if {f1, . . . , fs} ⊆ I.

Proof.
=⇒ Assume 〈f1, . . . , fs〉 ⊆ I. Each fi ∈ {f1, . . . , fs} can be constructed as

follows: fi = 0 · f1 + · · ·+ 1 · fi + · · ·+ 0 · fs, and hence {f1, . . . , fn} ⊆ I.

⇐= Assume {f1, . . . , fn} ⊆ I and choose any f ∈ 〈f1, . . . , fs〉 so that f =
h1f1 + · · ·+ hsfs where each hi ∈ K[x]. We see that f ∈ I since I is an
ideal and so 〈f1, . . . , fs〉 ⊆ I.

Example 1.2.14. Consider the ideals 〈x, y〉 and 〈x+ y, x− y〉 in the poly-
nomial ring Q[x, y]. We will show that these two ideals are equal so that
〈x, y〉 = 〈x+ y, x− y〉.

We see that x + y ∈ 〈x, y〉 and x − y ∈ 〈x, y〉, so by lemma 1.2.13,
〈x+ y, x− y〉 ⊆ 〈x, y〉. Similarly, both x = 1

2(x+ y) + 1
2(x− y) and y =

1
2(x+ y) − 1

2(x− y) are in 〈x+ y, x− y〉 so that by lemma 1.2.13, 〈x, y〉 ⊆
〈x+ y, x− y〉 and the equality follows.

Proposition 1.2.15. If {f1, . . . , fs} and {g1, . . . , gt} are two bases of the same
ideal in K[x1, . . . , xn], so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V (f1, . . . , fs) =
V (g1, . . . , gt).

Proof. Choose any (a1, . . . , an) ∈ V (f1, . . . , fs). We know that all poly-
nomials in {f1, . . . , fs} are equal to zero at (a1, . . . , an). Now choose any
g ∈ 〈g1, . . . , gt〉. Since 〈g1, . . . , gt〉 = 〈f1, . . . , fs〉, we can write g =∑s
i=1 hifi, hi ∈ K[x1, . . . , xn]. Then g(a1, . . . , an) =

∑s
i=1 hi(a1, . . . , an) ·

fi(a1, . . . , an) = 0, which shows that (a1, . . . , an) ∈ V (g1, . . . , gt), which means
that V (f1, . . . , fs) ⊆ V (g1, . . . , gt). The opposite inclusion can be proved in
the same way.

Example 1.2.14 shows that an ideal may have multiple different bases while
proposition 1.2.15 reveals that a variety is actually determined by the ideal
generated by its basis and not by the basis itself.

A system of multivariate equations can be seen as an ideal basis. Propo-
sition 1.2.15 then gives us a potential ability to change the original system
to another one while keeping the exact same solution set. We will model our
cipher as system of polynomial equations and then we will transform this sys-
tem into a new one which will be solvable in linear time. We will show that a
Gröbner basis is the new system and that the transformation will be the most
demanding part of the computation as regards both time and memory.
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1. Gröbner Bases

1.3 Monomial Orders

A Gröbner basis always pertains to a particular order on monomials. Let us
therefore introduce the most fundamental ones.

Before we actually define a monomial order, let us start with a concise
discussion about binary relations so that it is convenient to prove that certain
orders are in fact monomial orders.

Definition 1.3.1. Let S be a non-empty set. A binary relation on S is a
subset r of S×S. The relation ∆(S) = {(a, a) | a ∈ S} is the diagonal of S.

We will use only binary relations in our work and so we will refer to them
simply as relations. In order to simplify the notation, we will also employ infix
notation to denote that two elements are in a relation, i.e., if r is a binary
relation on S and a, b ∈ S, then a r b will mean (a, b) ∈ r.

Definition 1.3.2. Let r and s be relations on S. The relation r−1 =
{(a, b) | (b, a) ∈ r} is the inverse of r. The strict part of r is the relation
rs = r \ r−1, and

s ◦ r = {(a, c) | there is b ∈ S such that (a, b) ∈ r and (b, c) ∈ s}

is the product of r and s.

Definition 1.3.3. Let r be a relation on S. Then r is

(i) transitive if r ◦ r ⊆ r,

(ii) antisymmetric if r ∩ r−1 ⊆ ∆(S),

(iii) connex if r ∪ r−1 = S × S,

(iv) a linear order on S if r is transitive, antisymmetric and connex.

Definition 1.3.4. Let r be a relation on S with strict part rs and let R ⊆ S.
An element a ∈ R is minimal if there is no b ∈ R such that b rs a. A strictly
descending (or strictly decreasing) sequence in S is an infinite sequence
of elements an ∈ S such that an+1 rs an for all n ∈ N. The relation r is
noetherian if every non-empty subset R of S has a minimal element. The
relation r is a well-order on S if it is a noetherian linear order on S.

A natural way to think about the strict part of a relation is to consider the
natural order on N, which is a linear order, where for each m,n ∈ N; m > n
means m ≥ n and m 6= n. The symbol > denotes the strict part of the relation
≥. We will also denote our orders on monomials by �, the inverse will be �
and the strict parts will be denoted � and ≺.

We will denote byM(x1, . . . , xn), or simplyM, the set of all monomials in
the indeterminates x1, . . . , xn. It turns out that M forms an Abelian monoid
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1.3. Monomial Orders

under natural multiplication where we add corresponding exponents of the
indeterminates. The multiplicative identity is the monomial 1. Note that we
can associate any monomial xα ∈M(x1, . . . , xn) with its n-tuple of exponents
α = (α1, . . . , αn) ∈ Nn0 in a one-to-one fashion. Thus, we can use the sets M
and Nn0 interchangeably.

Lemma 1.3.5. A linear order ≥ on S is a well-order if and only if there is
no strictly descending sequence in S.

Proof. Let us turn the lemma into its contrapositive form: ≥ is not a well-
order if and only if there is a strictly descending sequence in S; and prove this
version of the lemma.

=⇒ Suppose ≥ is not a well-order. Then there is a non-empty subset R ⊆ S
that has no minimal element. We can choose a ∈ R and since a is not
the minimal element, we can choose again b ∈ R such that a > b, which
leads to a strictly descending sequence.

⇐= Suppose there is a strictly descending sequence in S. The elements of
such a sequence form a non-empty subset R of S that has no minimal
element. Hence, ≥ is not a well-order.

Definition 1.3.6. A monomial order � is a well-order onM, which satisfies
the property of respecting multiplication: ifm1 � m2, then n·m1 � n·m2
for all m1,m2, n ∈M.

The purpose of the property of respecting multiplication is that the relative
ordering of monomials in a polynomial does not change when we multiply
the polynomial by a monomial. Such behavior is necessary for the division
algorithm described in the next section.

Definition 1.3.7 (Lexicographic order). Let xα, xβ ∈ M(x1, . . . , xn) be
monomials. We say xα �lex xβ if α = β or if there is 1 ≤ i ≤ n such that
αj = βj for 1 ≤ j < i and αi > βi.

Note that �lex compares the exponent n-tuples α, β ∈ Nn0 so that xα �lex
xβ if the left-most non-zero component of the difference α−β ∈ Nn0 is positive.

Remark 1.3.8. Also note that the lexicographic order depends on how the
underlying indeterminates x1, x2, . . . , xn are ordered. In general, there are n!
ways to order n indeterminates and each of these orders has its respective
lexicographic order. We will only assume the standard order where x1 > x2 >
· · · > xn, or the alphabetical order where x > y > z.

Example 1.3.9.
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1. Gröbner Bases

(i) Let xy2z3 and xy3 be monomials in M(x, y, z). Then xy3 �lex xy2z3

since there is i = 2 and j = 1 such that αj = βj and αi > βi, where
α = (1, 3, 0) and β = (1, 2, 3). Also, the left-most non-zero component
of the difference β − α = (0, 1,−3) is positive.

(ii) Let x, y, z be monomials in M(x, y, z). Then considering remark 1.3.8
and example (i), we get x �lex y �lex z.

(iii) In the lexicographic order, note that a monomial that contains the most
significant indeterminate (as regards the underlying order) is greater
than any other monomial that does not contain such an indeterminate.
For example, if x and y3z2 are monomials inM(x, y, z), then x �lex y3z2.
The reasoning is the same as in (i) and (ii).

The intuitive outlook on the lexicographic order is that it looks for the most
significant indeterminate that appears in one of the monomials and then gives
preference to the monomial in which this indeterminate has greater power.

Proposition 1.3.10. The lexicographic order �lex on M is a monomial or-
der.

Proof. Following the definition of the lexicographic order and the fact that
the regular numerical order on N0 is a linear order, it is straightforward to
show that for any monomials xα, xβ, xγ ∈ M(x1, . . . , xn) and α, β, γ ∈ Nn0 ,
the following conditions hold:

(transitivity) if xα �lex xβ and xβ �lex xγ , then xα �lex xγ ;

(antisymmetry) if xα �lex xβ and xα �lex xβ, then xα = xβ; and

(connexity) either xα �lex xβ or xα �lex xβ.

These properties show that �lex is a linear order on M.
Let us prove the property of respecting multiplication explicitly. If xα �lex

xβ, then either α = β, or there is 1 ≤ i ≤ n such that αi−βi > 0 with αj = βj
for 1 ≤ j < i. Also, xα ·xγ = xα+γ and xβ ·xγ = xβ+γ . Comparing the results
gives us (α+ γ)− (β + γ) = α− β and we see that αi − βi > 0 with αj = βj
for 1 ≤ j < i again; or if α = β, then (α+ γ) = (β + γ). This shows that also
xα+γ �lex xβ+γ .

The last part to prove is to show that �lex is also noetherian, i.e a well-
order. We will prove this by the following contradiction:

By lemma 1.3.5, if �lex is not a well-order, then there is a strictly decreas-
ing sequence

xα(1) �lex xα(2) �lex · · ·
of elements in M(x1, . . . , xn), where each α(i) = (α1, . . . , αn) ∈ Nn0 . By the
definition of �lex, we also know that there exists a j such that all the first
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1.3. Monomial Orders

components of the n-tuples α(k) with k ≥ j are equal. Continuing further,
there is an l ≥ j such that all the second components of the n-tuples α(m) with
m ≥ l are all equal. We see that there must be a p ≥ l, for which the whole
n-tuples α(p) = α(p+1) = · · · are all equal. This means that the sequence is
not strictly decreasing, which contradicts the lemma.

Definition 1.3.11 (Reverse Colexicographic Order). Let xα, xβ ∈
M(x1, . . . , xn) be monomials. We say xα �rclex xβ if α = β or if there is
1 ≤ i ≤ n such that αj = βj for i < j ≤ n and αi < βi.

Observe that �rclex compares the exponent n-tuples α, β ∈ Nn0 so that
xα �rclex xβ if the right-most non-zero component of the difference α−β ∈ Nn0
is negative. Remark 1.3.8 also applies.

Example 1.3.12.

(i) Let xy2z3 and xy3 be monomials in M(x, y, z). Then xy3 �rclex xy2z3

as well as in example 1.3.9 (i), but for a different reason. There is i = 3
such that αi < βi, where α = (1, 3, 0) and β = (1, 2, 3). Also, the
right-most non-zero component of the difference β − α = (0, 1,−3) is
negative.

(ii) The lexicographic order coincides with the reverse colexicographic order
for monomials in one and two indeterminates. These orders may differ
for monomials in three and more variables, as shown by the following
example: let xz and y2 be monomials inM(x, y, z). Then xz �lex y2, as
explained in example 1.3.9 (i), but y2 �rclex xz, as explained in example
(i).

The intuitive outlook on the reverse colexicographic order is that it looks
for the least significant indeterminate that appears in one of the monomials
and then gives preference to the monomial in which this indeterminate has
lesser power. It can be thought of as a double reversal of the lexicographic
order — we first reverse the underlying order of the indeterminates and then
their powers.

Equivalently to the lexicographic order, it is straightforward to show that
the reverse colexicographic order is a linear order as well. However, it is
not a well-order since it is possible to define the following strictly decreasing
sequence

x1x2 �rclex x1x
2
2 �rclex x1x

3
2 �rclex · · ·

of monomials inM(x1, x2). In this sequence, let xα = x(1,n) and xβ = x(1,n+1)

for n ∈ N>0. We see that it is always the case that xα �rclex xβ since α1 = β1
and α2 < β2, and we get a strictly decreasing sequence. Hence, by lemma
1.3.5, �rclex is not a well-order and by definition 1.3.6, �rclex cannot be a
monomial order either. For this reason, we will not use it to order monomials

13
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on its own, but we will use it as a “sub-order” in the definition of the next
order, which will be a monomial order.

Examples 1.3.9 and 1.3.12 show that the lexicographic and reverse colexi-
cographic orders do not take into consideration the total degree of monomials.
Later in our work, we will see that in certain cases, it is desirable to order the
monomials in a polynomial according to their total degree. Let us therefore
introduce the following order, which allows for the total degree.

Definition 1.3.13 (Graded Reverse Lexicographic Order). Let xα, xβ ∈
M(x1, . . . , xn) be monomials. We say xα �grlex xβ if |xα| > |xβ|, or |xα| =
|xβ| and xα �rclex xβ.

Notice that despite its name, the graded reverse lexicographic order ac-
tually makes use of the reverse colexicographic order. There is a general
consensus on such a name, so we will follow it.

Example 1.3.14.

(i) Let x, y2, xz ∈ M(x, y) be monomials. Then y2 �grlex x since |y2| =
2 > |x| = 1; and y2 �grlex xz since |xz| = |y2| and y2 �rclex xz.

(ii) Let x, y, z ∈ M(x, yz) be monomials. Then x �grlex y �grlex z since
|x| = |y| = |z| and x �rclex y �rclex z.

Proposition 1.3.15. The graded reverse lexicographic order �grlex on M is
a monomial order.

Proof. Since �grlex first uses the usual well-order order on the total degree
of monomials |xα| ∈ N0 and when |xα| = |xβ|, it decides ties using the reverse
colexicographic order (which is a linear order), grlex is also linear.

It is also straightforward to show that �grlex is a well-order since we con-
sider only the strict part �grlex, which is solely the well-order on |xα| ∈ N0.

In order to show that the property of respecting multiplication holds, con-
sider the monomials xα, xβ, xγ ∈M(x1, . . . , xn) with the n-tuples α, β, γ ∈ Nn0 .
Also, xα · xγ = xα+γ and xβ · xγ = xα+γ . Assume xα �grles xβ. If |xα| > |xβ|,
then xα+γ �grlex xβ+γ since |xα+γ | = |xα|+|xγ | > |xβ|+|xγ | = |xβ+γ |. Also, if
|xα| = |xβ|, we get |xα+γ | = |xβ+γ | by the same argument as above and we use
the reverse colexicographic order. So if |xα| = |xβ|, then xα �rclex xβ (since
we have assumed that xα �grlex xβ

)
, which means that either α = β, or there

is 1 ≤ i ≤ n such that αi− βi < 0 with αj = βj for i < j ≤ n. As in the proof
of proposition 1.3.10, comparing the results gives us (α+ γ)−(β + γ) = α−β
and we see that αi − βi < 0 with αj = βj for i < j ≤ n again; or if α = β,
then (α+ γ) = (β + γ). This shows that xα+γ �grlex xβ+γ and completes the
proof.

1.4 Multivariate Division
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[4] Becker, T. Gröbner bases : a computational approach to commutative al-
gebra. New York: Springer-Verlag, 1993, ISBN 0-387-97971-9.

[5] Cox, D. Ideals, varieties, and algorithms : an introduction to computa-
tional algebraic geometry and commutative algebra. Cham: Springer, 2015,
ISBN 9783319167206.
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Appendix A
Abbreviations and Symbols

N0 = the set of natural numbers including zero

N>0 = the set of natural numbers excluding zero

Z = the set of integers

Q = the set of rational numbers (fractions)

R = the set of real numbers

C = the set of complex numbers

� indicates the end of a proof

e.g. (Latin exempli gratia) for example

i.e. (Latin id est) that is
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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