123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- //
- // Copyright (c) 2009 Mikko Mononen memon@inside.org
- //
- // This software is provided 'as-is', without any express or implied
- // warranty. In no event will the authors be held liable for any damages
- // arising from the use of this software.
- // Permission is granted to anyone to use this software for any purpose,
- // including commercial applications, and to alter it and redistribute it
- // freely, subject to the following restrictions:
- // 1. The origin of this software must not be misrepresented; you must not
- // claim that you wrote the original software. If you use this software
- // in a product, an acknowledgment in the product documentation would be
- // appreciated but is not required.
- // 2. Altered source versions must be plainly marked as such, and must not be
- // misrepresented as being the original software.
- // 3. This notice may not be removed or altered from any source distribution.
- //
- #include <math.h>
- #include "DetourCommon.h"
- void closestPtPointTriangle(float* closest, const float* p,
- const float* a, const float* b, const float* c)
- {
- // Check if P in vertex region outside A
- float ab[3], ac[3], ap[3];
- vsub(ab, b, a);
- vsub(ac, c, a);
- vsub(ap, p, a);
- float d1 = vdot(ab, ap);
- float d2 = vdot(ac, ap);
- if (d1 <= 0.0f && d2 <= 0.0f)
- {
- // barycentric coordinates (1,0,0)
- vcopy(closest, a);
- return;
- }
-
- // Check if P in vertex region outside B
- float bp[3];
- vsub(bp, p, b);
- float d3 = vdot(ab, bp);
- float d4 = vdot(ac, bp);
- if (d3 >= 0.0f && d4 <= d3)
- {
- // barycentric coordinates (0,1,0)
- vcopy(closest, b);
- return;
- }
-
- // Check if P in edge region of AB, if so return projection of P onto AB
- float vc = d1*d4 - d3*d2;
- if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
- {
- // barycentric coordinates (1-v,v,0)
- float v = d1 / (d1 - d3);
- closest[0] = a[0] + v * ab[0];
- closest[1] = a[1] + v * ab[1];
- closest[2] = a[2] + v * ab[2];
- return;
- }
-
- // Check if P in vertex region outside C
- float cp[3];
- vsub(cp, p, c);
- float d5 = vdot(ab, cp);
- float d6 = vdot(ac, cp);
- if (d6 >= 0.0f && d5 <= d6)
- {
- // barycentric coordinates (0,0,1)
- vcopy(closest, c);
- return;
- }
-
- // Check if P in edge region of AC, if so return projection of P onto AC
- float vb = d5*d2 - d1*d6;
- if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
- {
- // barycentric coordinates (1-w,0,w)
- float w = d2 / (d2 - d6);
- closest[0] = a[0] + w * ac[0];
- closest[1] = a[1] + w * ac[1];
- closest[2] = a[2] + w * ac[2];
- return;
- }
-
- // Check if P in edge region of BC, if so return projection of P onto BC
- float va = d3*d6 - d5*d4;
- if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
- {
- // barycentric coordinates (0,1-w,w)
- float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- closest[0] = b[0] + w * (c[0] - b[0]);
- closest[1] = b[1] + w * (c[1] - b[1]);
- closest[2] = b[2] + w * (c[2] - b[2]);
- return;
- }
-
- // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
- float denom = 1.0f / (va + vb + vc);
- float v = vb * denom;
- float w = vc * denom;
- closest[0] = a[0] + ab[0] * v + ac[0] * w;
- closest[1] = a[1] + ab[1] * v + ac[1] * w;
- closest[2] = a[2] + ab[2] * v + ac[2] * w;
- }
- bool intersectSegmentPoly2D(const float* p0, const float* p1,
- const float* verts, int nverts,
- float& tmin, float& tmax,
- int& segMin, int& segMax)
- {
- static const float EPS = 0.00000001f;
-
- tmin = 0;
- tmax = 1;
- segMin = -1;
- segMax = -1;
-
- float dir[3];
- vsub(dir, p1, p0);
-
- for (int i = 0, j = nverts-1; i < nverts; j=i++)
- {
- float edge[3], diff[3];
- vsub(edge, &verts[i*3], &verts[j*3]);
- vsub(diff, p0, &verts[j*3]);
- float n = vperp2D(edge, diff);
- float d = -vperp2D(edge, dir);
- if (fabs(d) < EPS)
- {
- // S is nearly parallel to this edge
- if (n < 0)
- return false;
- else
- continue;
- }
- float t = n / d;
- if (d < 0)
- {
- // segment S is entering across this edge
- if (t > tmin)
- {
- tmin = t;
- segMin = j;
- // S enters after leaving polygon
- if (tmin > tmax)
- return false;
- }
- }
- else
- {
- // segment S is leaving across this edge
- if (t < tmax)
- {
- tmax = t;
- segMax = j;
- // S leaves before entering polygon
- if (tmax < tmin)
- return false;
- }
- }
- }
-
- return true;
- }
- float distancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
- {
- float pqx = q[0] - p[0];
- float pqz = q[2] - p[2];
- float dx = pt[0] - p[0];
- float dz = pt[2] - p[2];
- float d = pqx*pqx + pqz*pqz;
- t = pqx*dx + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = p[0] + t*pqx - pt[0];
- dz = p[2] + t*pqz - pt[2];
-
- return dx*dx + dz*dz;
- }
- void calcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts)
- {
- tc[0] = 0.0f;
- tc[1] = 0.0f;
- tc[2] = 0.0f;
- for (int j = 0; j < nidx; ++j)
- {
- const float* v = &verts[idx[j]*3];
- tc[0] += v[0];
- tc[1] += v[1];
- tc[2] += v[2];
- }
- const float s = 1.0f / nidx;
- tc[0] *= s;
- tc[1] *= s;
- tc[2] *= s;
- }
- inline float vdot2(const float* a, const float* b)
- {
- return a[0]*b[0] + a[2]*b[2];
- }
- #include <stdio.h>
- bool closestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
- {
- float v0[3], v1[3], v2[3];
- vsub(v0, c,a);
- vsub(v1, b,a);
- vsub(v2, p,a);
-
- const float dot00 = vdot2(v0, v0);
- const float dot01 = vdot2(v0, v1);
- const float dot02 = vdot2(v0, v2);
- const float dot11 = vdot2(v1, v1);
- const float dot12 = vdot2(v1, v2);
-
- // Compute barycentric coordinates
- float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
- float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
- float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
- // The (sloppy) epsilon is needed to allow to get height of points which
- // are interpolated along the edges of the triangles.
- static const float EPS = 1e-4f;
-
- // If point lies inside the triangle, return interpolated ycoord.
- if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
- {
- h = a[1] + v0[1]*u + v1[1]*v;
- return true;
- }
-
- return false;
- }
|